Объем воды в резервуаре VA полностью определяется скоростью притока JВА и константой стока k и совершенно не зависит от того, какое количество воды было в резервуаре в начальный момент времени. Мы можем легко убедиться в этом экспериментально. Подставим сосуд с отверстием под равномерно текущую струю воды. Довольно быстро в сосуде установится динамическое равновесие. Отметим чертой уровень воды и, не убирая сосуда из-под струи, быстро нальем в него воду из другого сосуда. Уровень воды резко поднимется, но не останется таким, а постепенно опустится до отмеченного чертой положения. То же произойдет, если мы искусственно понизим уровень воды. Стремление к одному и тому же конечному состоянию означает, что система рано или поздно вновь приходит к нему независимо от своего исходного состояния. Эта ситуация наглядно представлена на рисунке.
Данный закон применим и к биологической системе. Многие из рассмотренных нами биологических систем, находящихся в состоянии динамического равновесия, при кратковременном воздействии извне вновь возвращаются к своему постоянному положению, определяемому параметрами системы. Позже мы увидим, что нелинейные системы не подчиняются действию этого закона.
Вернемся к соотношению потоков. До сих пор мы рассчитывали, только конечное состояние системы VAРАВН. Из рисунка видно, что величина VA может по-разному изменяться во времени. Попытаемся обосновать это теоретически.
Закроем кран, из которого вода поступает в резервуар. Уровень воды в сосуде понизится. Скорость понижения уровня определяется отношением изменения объема к интервалу времени. Сначала уровень воды понижается быстро, потом медленнее. Полученное отношение, таким образом, непрерывно изменяется, и поэтому лучше рассматривать "бесконечно малое" изменение объема в "бесконечно малый" интервал времени. "Бесконечно малое" отличие одной величины от другой дает "бесконечно малую" разницу, или "бесконечно малое" приращение, которое математики называют дифференциалом и обозначают символом d. Следовательно, dVA есть дифференциал объема и обозначает как раз "бесконечно малое" изменение объема. Соответственно dt — это бесконечно малый интервал времени. Составив отношение dVA/dt (математики говорят не "dVA на dt, a dVA no dt"), мы получим известное каждому старшекласснику отношение дифференциалов, или производную.
Если вода из сосуда не испаряется, то ее объем уменьшается лишь за счет стока. Тогда мы можем записать
-(dVA/dt) = JAB
Знак "минус" означает, что положительный сток вызывает отрицательное изменение объема, т. е. его уменьшение. С учетом уравнения потока получим
-(dVA/dt) = k ⋅ VA
Это очень важное уравнение, которое справедливо для многих процессов, происходящих как в живой, так и в неживой природе. Оно показывает, что скорость изменения величины, определяемая производной dVA/dt, прямо пропорциональна самой величине — в данном случае VА. Чем больше VA, Т. е. чем дальше кривая удалена от оси абсцисс, тем круче она снижается.
Это уравнение справедливо для случая, когда верхний кран в резервуаре закрыт. Если мы откроем его и обеспечим постоянный приток воды в единицу времени JВА, то изменение величины VА будет определяться другим уравнением:
dVA/dt = — kVA + JBA.
Это уже общее уравнение, которое описывает изменение уровня воды в зависимости от времени в сосуде с двумя открытыми кранами.
Когда система достигает динамического равновесия, VA больше не изменяется, следовательно, dVA/dt = 0, а величина VA в уравнении становится равной VAравн. Тогда
0 = — kVAравн + JBA.
Как легко заметить, здесь обнаруживается та же связь между объемом VAравн и потоком JВА, о которой мы говорили выше.
Однако вернемся к общему уравнению динамической системы. Так как переменная VА входит в него не только непосредственно, но и через отношение дифференциалов dVA/dt, такое уравнение называется дифференциальным. Дифференциальные уравнения составляют весьма солидный раздел математики, но здесь мы, разумеется, не имеем возможности его рассматривать. Обсудим только некоторые особенности уравнений такого рода. Решить уравнение — значит найти число, которое, будучи подставленным в уравнение, превращает его в тождество. В отличие от обычных алгебраических уравнений дифференциальное уравнение имеет своим решением не число, а функцию. Поэтому часто говорят не о решении такого уравнения, а о его "интегрировании". Интегрирование есть операция, в известной степени обратная дифференцированию. Поэтому в данном случае интегрирование означает такое преобразование уравнения, при котором производная исчезает.