Учащиеся обычно недолюбливают операцию интегрирования. В то время как производные можно получить, зная общие правила дифференцирования, для интегрирования необходимо знать правильный "прием". И хотя во многих конкретных случаях существуют определенные правила нахождения решения, сформулировать ход решения в общем виде нельзя. Иногда интегрирование вообще невозможно. Поэтому не всякое дифференциальное уравнение можно решить аналитически, иногда приходится довольствоваться приближенными машинными расчетами.
Каждый, кто знаком с основами интегрального исчисления, знает, что в решение интеграла обязательно входят постоянные интегрирования. Необходимость в них отпадает только для так называемых определенных интегралов, в которых пределы изменения функции четко очерчены. Постоянные вводятся и при решении дифференциальных уравнений. Сначала интегрирование дает нам общее решение: бесконечное множество кривых определенного вида. И только после того, как мы находим начальные условия, мы можем "выудить" из них "частное решение".
Это хорошо видно из рисунка, показывающего изменение объема воды в резервуаре. Представленные на нем кривые являются различными частными решениями, которые относятся к разным начальным условиям, но в итоге все кривые стремятся к одному и тому же значению VAравн.
Чтобы сделать наше довольно сухое и, казалось бы, столь далекое от биологии изложение более понятным, оглянемся на пройденный путь и подведем некоторые итоги.
Сначала мы установили, что динамическую систему, например обмен веществ в клетке, можно сравнить с резервуаром, в который вода поступает через один кран и вытекает через другой. Затем мы попытались сделать кое-какие расчеты. Для этого мы ввели понятия обобщенной силы и потока, установили соотношения между ними. Оказалось, что в динамической системе изменение величины можно выразить отношением дифференциалов, а поведение всей системы описать дифференциальным уравнением. Решение, или интегрирование, такого уравнения дает нам сначала множество кривых одинакового вида, которые показывают, как будет "развиваться" система из любого исходного положения до тех пор, пока не достигнет стационарного, т. е. не зависимого от времени, состояния динамического равновесия. Особенно важно отметить, что все эти кривые в итоге стремятся к одной точке. Такое поведение простых линейных систем мы назвали "стремлением к одному конечному состоянию". Это свойство и определяет устойчивость биологических систем.
Что же дают нам теоретические представления? Прежде всего они позволяют построить модель любой сложной системы. На рисунке показано, как чисто схематически при помощи гидравлической модели можно представить обмен веществ, протекающий в клетке или в какой-нибудь из ее органелл, например в митохондрии. Если для каждой ячейки (т. е. резервуара) просуммировать потоки по всем направлениям и приравнять их соответствующим отношениям дифференциалов, как мы это делали раньше, то мы снова получим дифференциальные уравнения, решения которых позволяют описать поведение всей системы. Здесь нам опять может пригодиться ЭВМ.
Какое практическое применение имеют подобные расчеты? Допустим, в клинику обращается пациент с заболеванием, причиной которого может быть расстройство функций щитовидной железы. В радиологическом отделении ему дают выпить жидкость, содержащую безвредный для организма быстро распадающийся радиоактивный иод. Счетчик радиоактивности регистрирует интенсивность его излучения в различных частях тела; ЭВМ рассчитывает, исходя из этого, константы скоростей поступления иода в кровь и накопления его в щитовидной железе. На основании этих данных врач может поставить точный диагноз.
Вещество из внешней среды поступает через клеточную мембрану в клетку К, а затем следует дальше в одну из клеточных структур, 'клеточную органеллу', например митохондрию М (а). Этот процесс можно смоделировать системой из двух наполненных водой резервуаров с насосами Н (б), которые показаны схематически (в). Рисунки расположены в последовательности, соответствующей переходу от конкретной биологической системы к ее все более абстрактному изображению
В медицине довольно часто возникает необходимость в расчетах такого рода. Как применять лекарство, т. е. в каком количестве и через какие интервалы времени следует принимать или вводить данное вещество, чтобы его концентрация в нужном месте была оптимальной? Лекарство попадает в организм и затем разлагается; от частоты его приема зависит уровень равновесной концентрации. А как влияет интенсивность дыхания на снабжение кислородом определенного органа? Как ускорить выведение из организма токсических веществ?