Анализируя линейные и нелинейные уравнения, описывающие различные биологические процессы, мы могли оценить степень сложности этих процессов. Говоря, о "стремлении к одному и тому же конечному состоянию" линейных систем и неоднозначности нелинейных, мы тем самым, хотя бы мимоходом, коснулись вопросов развития этих систем.
Читатель, возможно, заметил, что в наших рассуждениях мы совсем не пользовались понятием "кибернетика". Сейчас появилось много книг по биологической кибернетике, так что нам нет необходимости рассматривать здесь это весьма модное научное направление. Но в принципе рассмотренные нами вопросы можно было бы связать с кибернетикой. Известно, что многие биологические процессы управляются посредством обратной связи, и очень трудно определить границу, отделяющую теорию динамического равновесия от кибернетики. Многое из того, о чем мы говорили, можно без всяких оговорок отнести к кибернетике. Во всяком случае, следует знать, что кибернетика это не игра, оперирующая некими более или менее высокими понятиями, как это, к сожалению, часто бывает, а строгая математическая дисциплина, построенная на основе дифференциальных уравнений.
Беглый взгляд на механизм живого
Часовой механизм живого. Кто его "заводит"? Как он останавливается? В чем заключена движущая сила биологических процессов? Какое отношение к фотосинтезу имеет паровая машина Карно? Термодинамика — всемогущее учение об энергии. От солнечной энергии к химической, электрической, механической. Аденозинфосфаты — химические аккумуляторы. Электрические потенциалы и энергия обмена веществ. Шестеренки сцепляются друг с другом.
Наши размышления заставляют нас все глубже проникать в суть проблемы. Каждый вопрос рождает сотню новых. Начав с формы, мы пришли к движению и установили связь между ними. Сначала это было только наблюдение: нечто двигалось под воздействием какой-то силы, природой которой мы не интересовались. Образно говоря, мы установили, что стрелки часов движутся и это движение подчиняется определенным закономерностям. А теперь сделаем еще шаг вперед: в чем причина движения? Что приводит "шестеренки" живого в движение? Откуда берется движущая сила? Как происходит преобразование энергии?
Мы уже неоднократно обращались к часам как к примеру точной технической системы. Энергетический баланс часов рассчитать нетрудно. Механическая энергия запасается в пружине и затем освобождается опять же в виде механической энергии, приводя в действие часовой механизм. В биологической системе процессы преобразования энергии несравнимо сложнee. Это видно хотя бы из того множества видов "биологического движения", о которых мы говорили в предыдущей главе.
Чтобы подойти к пониманию биологически важных процессов преобразования энергии, нам придется обратиться к истории. В прошлом веке в науке возникло новое направление, которое сначала ставило своей целью лишь одно — улучшение рабочих качеств паровых машин. Это наука об энергии, которую тогда же окрестили термодинамикой — учением о тепловом движении. Достаточно ли высок коэффициент полезного действия паровой машины и как его можно повысить? Можно ли создать вечный двигатель? Почему материал, к примеру тот, из которого изготовляют пушечный ствол, при сверлении нагревается? Таковы были первые вопросы, которые пыталась разрешить эта наука. Со времени своего возникновения термодинамика пережила бурный подъем и продолжает стремительно развиваться в наши дни. Сейчас она служит теоретической основой для расчета всех энергетических процессов, протекающих в природе.
Термодинамику неоднократно пытались использовать для анализа сложных механизмов жизни. Но из-за трудности проблемы все попытки терпели неудачу. Только в последние десятилетия термодинамика достигла такого состояния, которое позволило ей внести важный вклад и в биологию. Сначала идеи термодинамики прочно утвердились в области клеточной и молекулярной биологии, а теперь говорят уже о термодинамике роста, эволюции и даже процесса мышления.
Термодинамика — это выдающееся создание человеческого ума. В ее основе лежат несколько "само собой разумеющихся", эмпирически установленных истин, на которых воздвигнуто логически стройное, надежное и устойчивое здание высшей абстракции. С высоты этого здания, построенного из "математических блоков" на фундаменте точного эксперимента, нам открываются далекие горизонты познания.
Здесь мы не можем останавливаться на частных разделах термодинамики, их развитии и современном состоянии. Однако для понимания общих закономерностей этого и не нужно. Вполне достаточно общего обзора, но нам придется начать издалека.