Используя дифракцию рентгеновских лучей, можно определить внешний вид биологической макромолекулы. Однако этот метод связан с большими трудностями. Пока известны структурные модели только очень немногих молекул
То, что справедливо для очень малых, но все же состоящих из многих молекул объектов, в еще большей степени относится к самим молекулам. Строение молекулы бессилен отобразить даже электронный микроскоп. Для того чтобы получить представление о структуре биологических макромолекул, используют метод дифракции рентгеновских лучей (рентгеноструктурный анализ). У рентгеновских лучей длина волны составляет несколько ангстрем (1 Å = 10-8см), и, следовательно, с их помощью еще можно получить "изображение" молекулярных структур. Узкий пучок рентгеновских лучей, проходя через возможно более тонкий слой макромолекулярного вещества, к примеру белка, дает на фотопластинке картину дифракции, которая непосвященному показалась бы бессмысленной. Места почернения на фотопластинке очень тщательно промеряют и обсчитывают. В результате получают картину распределения плотности электронов в молекуле. Она напоминает карту гористой местности. На основании такой карты физик строит модель молекулы. Здесь речь уже не идет о какой-то зафиксированной, "замороженной" картине, как в случае электронной микроскопии, однако и эта модель не дает нам четкого представления о динамической структуре молекул. И хотя при рентгеноструктурном анализе движение молекул не "замораживается", то, что мы видим, можно считать неким средним значением для очень многих молекул. Таким образом, модель молекулы своей неподвижностью напоминает манекен, застывший в витрине магазина.
Модель молекулы, составленная из полушарий. Такие модели таят в себе опасность вступить на позиции механицизма
Мы должны твердо усвоить: "видеть" молекулу нельзя, о "внешности" молекулы не может быть и речи. Вместо "портрета" молекулы мы получаем ее научно обоснованное описание, которое отнюдь не идентично знакомым нам картинам из видимого и привычного мира макрофизики.
Итак, молекула представляет собой динамическую структуру. Но можно ли, основываясь на модели, полученной в результате рентгеноструктурного анализа, определить хотя бы усредненные размеры и. форму молекулы? Да, конечно, однако и здесь существуют свои трудности. Проще всего их продемонстрировать на примере атомов или ионов, т. е. атомов, которые, потеряв или присоединив то или иное число электронов, несут электрический заряд. Ранее мы уже обсуждали значение этих носителей заряда, в частности ионов натрия и калия, которые имеют положительный заряд и называются катионами. Каков размер иона?
Мы привыкли к тому, что размеры окружающих нас предметов и расстояния между ними можно измерять различными способами. Например, длину спортивной площадки можно либо измерить рулеткой, либо определить с помощью оптического дальномера. В принципе мы можем также заметить время, за которое звук пройдет измеряемый отрезок, а затем, зная скорость звука, рассчитать длину отрезка (примерно так, засекая момент вспышки молнии, а затем раската грома, на основании разницы во времени определяют в грозу отдаленность разрядов). И хотя в зависимости от применяемых методов точность измерения длины площадки будет различной, результат измерений всегда окажется одинаковым.
Однако сейчас нам следует забыть наш повседневный опыт. Он не подтверждается на молекулярном и атомном уровнях. Если мы определим радиус иона разными методами, то получим совершенно различные результаты. Рассмотрим следующий пример. В кристалле поваренной соли ионы натрия и хлора "упакованы" в строгом порядке, как елочные шары в коробке. С помощью рентгеноструктурного анализа можно очень точно установить расстояние между центрами ионов. В результате мы получаем так называемый кристаллический радиус иона; например, у натрия он составляет 0,95 Å.
Теперь попытаемся измерить размеры иона другим способом. Когда шар проходит через жидкость, его скорость зависит от величины действующей на него силы, вязкости жидкости и радиуса шара. Если ионы поместить в раствор между двумя электродами, они будут двигаться в электрическом поле. Этот процесс называют электрофорезом. Скорость движения ионов можно определить, зная электрическое сопротивление раствора. Вязкость воды тоже известна. Таким образом, можно рассчитать радиус иона. С удивлением мы обнаруживаем, что для того же иона натрия радиус равен 1,85 Å, т. е. вдвое больше кристаллического радиуса. Что это, ошибка измерения? Ничего подобного. Просто мы измерили совсем другой параметр. Его называют гидратационным радиусом. Ион притягивает воду и движется, облаченный в водяную рубашку. И следовательно, "ошибка" заключается в том, что в этом случае мы как бы измеряем диаметр елочного шара, завернутого в бумагу. В действительности дело обстоит гораздо сложнее, ибо ионы не новогодние шары и у них нет твердой поверхности. Даже если в очень грубом приближении можно представить ядро и электроны как материальные точки, то ион в целом следует рассматривать как область действия сильнейших электрических полей. Что же тогда мы измеряем?