Среди этих обобщений необходимо отметить следующие:
1) Размножение всех организмов выражается геометрическими прогрессиями. Можно выразить это в единообразной формуле:
2n∆= Nn
где п — число дней с начала размножения;
∆ — показатель прогрессии, который для одноклеточных организмов, размножающихся делением, соответствует числу поколений в сутки;
Nn— число неделимых, существующих благодаря размножению через п дней.
Характерным для каждого живого вещества является ∆. В этой формуле никаких пределов, никаких ограничений ни для n, ни для ∆, ни для N не заключается.
Процесс мыслится бесконечным, как бесконечной является прогрессия.
2) Эта бесконечность возможности проявления размножения организма сказывается в подчинении этого проявления в биосфере, т. е. растекания живого вещества, правилу инерции. Может считаться эмпирически установленным, что процесс размножения задерживается в своем проявлении только внешними силами; он замирает при низкой температуре, прекращается или ослабляется при недостатке пищи или дыхания, при отсутствии места для обитания вновь создаваемых организмов. Уже в 1858 г. Ч. Дарвин и А. Уоллес высказали эту мысль в форме, которая была давно ясна натуралистам, вдумывавшимся в эти явления, например К. Линнею, Ж. Бюффону, А. Гумбольдту, К. Эренбергу, К. М. Бэру: если не будет внешних препятствий, всякий организм в разное, определенное для него время может размножением покрыть весь земной шар, произвести по объему потомство, равное массе океана или земной коры.
3) Темп размножения, сказывающийся в таком эффекте, отличен для каждого организма и находится в тесной зависимости от размеров организма. Мелкие организмы, т. е. организмы в то же время и более легкие, размножаются гораздо быстрее. чем большие организмы, т. е. организмы в то же время большего веса.
§33. В этих трех эмпирических положениях явления размножения организмов выражены вне времени и пространства или, вернее, в геометрических и механических бесформенных однородных времени и пространстве.
В действительности жизнь в той форме, в какой мы ее изучаем, есть чисто земное — планетное — явление, не отделимое от биосферы, созданное и приспособившееся к ее условиям.
Перенесенная в отвлеченное время и отвлеченное пространство математики жизнь является фикцией, созданием нашего разума, отличным от реального явления.
Если мы хотим иметь точные, научные представления в наши положения о ее свойствах, мы должны внести поправки в отвлеченные понятия времени и пространства; эти поправки могут в корне, как мы видим в данном случае.
изменить наши выводы, в которых свойства земных времени и пространства не были предусмотрены.
§34. На Земле организмы живут в ограниченном пространстве, одинаковом по размерам для всех них. Они живут в пространстве определенного строения в газообразной или проникнутой газами жидкой среде. И хотя время нам представляется безграничным, но время какого-нибудь процесса в ограниченном пространстве, каким является размножение организмов, не может являться безграничным. Оно тоже будет иметь предел, различный для каждого организма в зависимости от характера его процесса размножения.
Неизбежным следствием этого положения является ограничение всех величин, определяющих явления размножения организмов в биосфере. Должны существовать наибольшие числа неделимых, которые могут дать разные живые вещества. Эти числа — Nmax — должны быть конечны и характерны для каждого вида и расы. Скорости передачи жизни должны заключаться в точных и определенных пределах, которые не могут быть никогда превзойдены. Наконец, величины Д геометрических прогрессий размножения тоже имеют определенные пределы.
Эти пределы устанавливаются двумя проявлениями планеты: 1) ее размерами и 2) физическим заполнением пространства, в котором течет жизнь, жидкостями и газами — прежде всего свойствами газов и характером газового обмена.
§ 35. Остановимся на ограничении, вносимом размерами планеты. Влияние этих размеров мы видим на каждом шагу. Небольшие водоемы очень часто покрыты сплошь на своей поверхности плавающей на них зеленой растительностью. В наших широтах это очень часто зеленые ряски — разные виды Lетпа. Поверхность воды представляет сплошной зеленый их покров без промежутков. Растеньица тесно сдвинуты, их зеленые пластинки заходят друг на друга; процесс размножения действует, но он замедлен внешним препятствием — прежде всего отсутствием места. Он проявляется только тогда, когда в зеленом покрове вследствие внешних разнообразных причин — гибели рясок или их уноса — образуются пустые промежутки водной поверхности. Они
немедленно замещаются размножением. Очевидно, количество неделимых ряски, могущих поместиться на данной площади, определенно и находится в зависимости от размеров и условий их существования. Когда оно достигнуто, процесс размножения останавливается, задерживается внешним неодолимым препятствием. В каждом пруду создается своеобразное динамическое равновесие, аналогичное тому, какое в нем наблюдается при испарении воды с его поверхности. Упругость паров и упругость жизни механически аналогичны.
Другой всем известный пример представляет в картине природы жизнь зеленой водоросли — разных видов Protococcus, обладающей гораздо большей геохимической энергией, чем ряска. Она покрывает в благоприятных условиях сплошь без промежутков (§ 50) стволы деревьев. Дальше ей идти некуда; ее процесс размножения задержан; он возобновляется вновь, как только открывается возможность помещения новых неделимых Protococcus. Количество неделимых этой водоросли, могущих поместиться на площади дерева, строго определенно и не может быть превзойдено.
§ 36. Эти соображения могут быть целиком перенесены на всю живую природу и на область, доступную ес обитанию— на поверхность нашей планеты. Наибольшее могущее существовать проявление силы размножения живого вещества определено размерами планеты и выражается в количестве неделимых, которые могут разместиться на площади, равной 5,10065 • 108 км2. Это количество есть функция густоты скопления организмов, возможной для их жизни.
Эта густота очень различна; для ряски или одноклеточной водоросли протококка она определяется только их размерами; другие организмы требуют гораздо большей площади (или объема) для жизни. Слон в Индии требует до 30 км2, овца на горных пастбищах Шотландии — около 105 м2, средний улей пчел — не менее 10—15 км2 (одна пчела — не менее 2 • 10-4км2, т. е. 200 м2) среднего красного леса Украины, от 3000 до 15 000 неделимых планктона хорошо развиваются в 1000 см3 морской воды, 25—30 см2 достаточны для обычных злаков, несколько (иногда десятков) квадратных метров — для неделимых обычного нашего леса.
Очевидно, скорость передачи жизни зависит от возможной густоты хорошо живущей, не страдающей в своих проявлениях совокупности неделимых, от плотности живого вещества.
Не буду здесь останавливаться на очень еще мало изученной этой важной константе жизни в биосфере. Ясно, что наибольшая плотность сплошного покрова (типа ряски или протококка) или сплошного заполнения 1 см-5 мельчайшей бактерией (§ 29) даст нам, если принять ее возможной для всех организмов, наибольшее допустимое для данного вида количество его неделимых в биосфере. Для получения этого числа необходимо принять плотность равной квадрату максимального изменения организма, т. е. его длины и ширины (коэффициент k1)5.
§37. Ограничение размножения размерами планеты, неизбежная остановка процесса уже этим путем, помимо более глубокого влияния, оказываемого, как увидим, зеленой средой (§ 123), придает этому процессу очень своеобразные и важные черты.
Прежде всею, очевидно, есть предельное, одинаковое для всех организмов, наибольшее расстояние, по какому может распространяться передача жизни. Оно равно земному экватору, т. е. 40 075 721 м.