Выбрать главу
Рынок швейцарского франка с 1993 по 1998 годы
Чистая прибыль $10.000 $8.000
Число торгов 29 45
Число выигрышей 10 15
Число убытков 19 30
% выигрышей 34% 33%
Средний выигрыш $3.200 $3.000
Средний убыток $1.200 $1.200
Средняя торговля $350 $175
Коэффициент выигрыш/проигрыш 2,75 2,40
Максимальное проседание $7.000 $11.000

Полученные итоги несколько отличаются не только друг от друга но и от других результатов по рынку бондов. Они также отличаются и от результатов, полученных в результате оптимизации самого рынка франка. После оптимизации параметров оптимальной оказалась 19 дневная краткосрочная скользящая средняя, в то время как оптимальная долгосрочная скользящая средняя была 27-дневной. Результаты в рамке вверху страницы были получены в результате тестирования.

Не стоит опрометчиво отвергать оптимизацию, поскольку все системы и все инструменты будут сталкиваться с аналогичными различиями между оптимизированными результатами на разных временных промежутках. А если это так, что реально мы можем ожидать от торговых систем? Если результаты оптимизации нереалистичны, то как мы трейдеры, сможем узнать, что нас ожидает? Одним словом, никак. Мы можем делать некоторые логические выводы, но не на основании результатов, а исходя из процесса оптимизации. Оптимизация никогда не должна проводиться с целью установления наилучших параметров остановок, правил выхода и т. д. То, что принесло высокие результаты в прошлом, необязательно принесет такие же результаты в будущем. Вероятность правильности моих слов выше вероятности, что в вас не ударит молния. Кроме того, высока вероятность, что результаты, оптимизированные для одного набора данных, не будут даже приблизительно оптимальными для аналогичного набора данных в другой период времени.

Чистая прибыль $39.000

Число торгов 52

Число выигрышей 26

Число убытков 26

% выигрышей 50%

Средний выигрыш $2.600

Средний убыток $ 1.100

Средняя торговля $730

Коэффициент выигрыш/проигрыш 2,30

Наибольшее падение капитала $6.000

ПРОЦЕСС ОПТИМИЗАЦИИ

Единственная практическая польза оптимизации связана не с результатами как таковыми, а скорее с данными, получаемыми по итогам тестирования при оптимизации. Например, оптимизация рынка швейцарского франка по системе пересекающихся простых скользящих средних включает 496 различных тестовых параметров. Каждый из этих тестов дает особый набор показателей. Не стоит делать какие-либо практические выводы, основываясь на показателях одного, пускай даже лучшего, теста. Гораздо разумнее рассмотреть как можно большее количество тестов.

Когда я оптимизирую систему, то не стремлюсь к получению самых высоких результатов. Вместо этого я пытаюсь определить, насколько устойчива рентабельность системы в ходе процесса тестирования. Возвращаясь к методу пересечения простых скользящих средних, который использовался для рынка бондов, нужно сказать, что для периода 1994–1998 годов было проведено 496 тестов. В рамках этого периода самые лучшие результаты были получены для 10-дневной краткосрочной скользящей средней и 34-дневной долгосрочной скользящей средней. Ниже приведены результаты тестирования четырехлетнего периода:

Чистая прибыль $44.000

Число торгов 21

Число выигрышей 13

Число убытков 8

% выигрышей 62%

Средний выигрыш $4.200

Средний убыток $ 1.300

Средняя торговля $2.100

Коэффициент выигрыш/проигрыш 3,15

Наибольшее падение капитала $5.000

Эти показатели будут первым контрольным набором данных. Последующий набор показателей получен при менее удачном использовании набора параметров. Эти данные возникли при использовании 4-дневной краткосрочной скользящей средней и 25-дневной долгосрочной скользящей средней.