Выбрать главу

Прямые и кривые, идущие по пространству-времени, играют в работе Минковского особую роль. Отдельная точка в пространстве представляет положение частицы. Но, изображая движение частицы в пространстве-времени, мы получаем прямую или кривую, которую называют мировой линией. Определенного рода движение при этом неизбежно. Даже если частица остается совершенно неподвижной, она непременно движется во времени. Траектория такой неподвижной частицы будет вертикальной прямой линией. Траекторией частицы, движущейся вправо, будет мировая линия, наклоненная вправо.

Аналогично, наклон мировой линии влево описывает движением влево. Чем сильнее линия отклоняется от вертикали, тем быстрее движется частица. Минковский представлял движение световых лучей — самых быстрых из всех объектов — линиями, проведенными под углом 45 градусов. Поскольку ни одна частица не может двигаться быстрее света, траектория реального объекта не может наклоняться более чем на 45 градусов к вертикали.

Минковский называл мировые линии частиц движущихся медленнее света, времениподобными, поскольку они близки к вертикальным. Траектории световых лучей, наклоненные на 4S градусов, он называл светоподобными.

Собственное время

Понятие расстояния очень легко схватывается человеческим мозгом. Оно бывает особенно простым, когда расстояние измеряется вдоль прямой линии. Для этого достаточно обычной линейки. Измерить расстояние вдоль кривой несколько труднее, но не намного. Просто замените линейку гибкой измерительной лентой. Расстояния в пространстве-времени, однако, — вещь более тонкая, и не сразу ясно, как их измерять. В действительности такого понятия до Минковского просто не существовало.

Минковского особенно интересовало понятие расстояния вдоль мировой линии. Возьмем, например, мировую линию покоящейся частицы. Поскольку траектория не покрывает никакого пространственного расстояния, линейки и мерные ленты тут бесполезны. Но Минковский понял, что даже идеально зафиксированный объект движется во времени. Правильный инструмент для измерения его мировой линии — не линейка, а часы. Он назвал новое понятие расстояния вдоль мировой линии собственным временем.

Представьте, что каждый объект, куда бы он ни двигался, несет на себе небольшие часы, как человек, который носит часы в кармане. Собственное время между двумя событиями на мировой линии — это время, прошедшее между событиями по часам, которые двигались вдоль мировой линии. Отсчеты часов аналогичны сантиметровым делениям мерной ленты, но вместо обычного расстояния они измеряют собственное время по Минковскому.

Вот конкретный пример. Мистер Черепаха и мистер Заяц решили устроить гонки в Центральном парке. Чтобы определить победителя, на концах дистанции поставили судей с тщательно синхронизированными часами. Забег начинается ровно в 12:00, и на середине пути Заяц настолько вырвался вперед, что решил вздремнуть, прежде чем продолжать движение. Но он проспал, и когда проснулся, то увидел, как Черепаха приближается к линии финиша. Не желая проигрывать гонку, Заяц как молния бросился вдогонку и едва успел пересечь финишную черту одновременно с Черепахой.

Мистер Черепаха достает свои очень точные карманные часы и гордо демонстрирует ожидающей толпе, что собственное время вдоль сегмента его мировой линии от старта до финиша составляет 2 часа 56 минут. Но почему это новое понятие называется собственным временем? Почему Черепахе просто не сказать, что его время от старта до финиша составило 2 часа 56 минут? Разве время не просто время?

Ньютон, конечно, так и думал. Он считал, что эталонные божественные часы определяют универсальный поток времени, с которым все остальные часы должны синхронизироваться. Все доброкачественные, честные часы идут в строго одинаковом темпе, так что, будучи раз синхронизированными, они остаются синхронными. Что бы ни случилось с Черепахой или Зайцем, они могут узнать время, взглянув на ближайшие часы или посмотрев на свои собственные карманные. Для Ньютона было аксиомой, что независимо от того, куда вы направились, с какой скоростью, по прямой или по кривой траектории, ваши карманные часы — если считать, что они тоже доброкачественные и честные, — будут совпадать в показаниях с ближайшими местными часами. Ньютоновское время обладает абсолютной реальностью, в нем нет ничего относительного.

Но в 1905 году Эйнштейн внес путаницу в ньютоново абсолютное время. Согласно специальной теории относительности, темп, в котором идут часы, даже если они являются идеальными копиями друг друга, зависит от того, как они движутся. В обычных обстоятельствах этот эффект неощутим, но когда часы разгоняются до скорости, близкой к световой, он становится очень заметным. По Эйнштейну, любые часы, движущиеся вдоль своей мировой линии, идут в своем темпе. Отсюда Минковский пришел к определению нового понятия собственного времени.

Просто для иллюстрации: когда Заяц достает свои часы (тоже доброкачественные и честные), они показывают собственное время его мировой линии, равное 1 часу и 36 минутам[30]. Хотя они стартовали и финишировали в одних и тех же точках пространства-времени, мировые линии Черепахи и Зайца имеют разные собственные времена.

Прежде чем продолжать обсуждение собственного времени, полезно немного поразмышлять об обычных расстояниях, измеряемых вдоль кривых с помощью мерной ленты. Возьмите любые две точки в пространстве и соедините их кривой линией. Насколько далеки эти точки, если мерить вдоль линии? Очевидно, что ответ зависит от кривой. Вот две кривые, соединяющие одни и те же точки (a и b), но имеющие совсем разную длину. Вдоль верхней кривой расстояние составляет пять дюймов, а вдоль нижней — восемь дюймов.

Нет, конечно, ничего удивительного в том, что разные кривые, проведенные от a до b, имеют разную длину.

Теперь вернемся к задаче измерения мировых линий в пространстве-времени. Вот рисунок типичной мировой линии. Заметьте, что она искривлена. Это означает, что скорость вдоль траектории не остается постоянной. В данном примере быстро движущаяся частица замедляется. Точками отмечены моменты тиканья часов. Каждый интервал соответствует одной секунде.

Обратите внимание, что на более пологих участках кажется, что секунды тянутся дольше. Это не ошибка, а отражение открытого Эйнштейном знаменитого растяжения времени: быстро движущиеся часы идут медленнее часов, которые движутся не так быстро или покоятся.

Рассмотрим две кривые мировые линии, соединяющие два события. Эйнштейн, как обычно, мысленно экспериментируя, представил себе двух близнецов — я буду называть ихАлисой и Бобом, — родившихся одновременна Событие их рождения обозначим а. В момент рождения близнецов разделяют; Боб остается дома, а Алису с чудовищной скоростью увозят прочь. Спустя некоторое время Эйнштейн разворачивает Алису и направляет ее домой. Наконец, Боб и Алиса вновь встречаются в точке b.

При рождении Эйнштейн дал близнецам одинаковые прекрасно синхронизированные карманные часы. Когда Боб и Алиса, наконец, встретились в точке Ь, они сравнили показания своих часов и обнаружили то, что повергло бы в недоумение Ньютона. У Боба отросла длинная седая борода, тогда как Алиса была сама молодость. Судя по их карманным часам, собственное время вдоль мировой линии оказалось у Алисы намного меньше, чем у Боба. Так же как обычное расстояние между двумя точками зависит от соединяющей их кривой, собственное время между двумя событиями зависит от соединяющей их мировой линии.

Заметит ли Алиса во время путешествия, что ее часы замедлились? Ни в коей мере. Те часы — не единственная вещь, испытавшая замедление; то же самое произошло с ее сердцебиением, работой ее мозга и всего метаболизма. Во время путешествия Алисе не с чем сравнивать ход своих часов, но когда она наконец встретилась с Бобом во второй раз, она обнаружила, что значительно моложе его. Этот «парадокс близнецов» озадачивает студентов-физиков уже более ста лет.

вернуться

30

Это крайнее преувеличение, для такого результата Зайцу пришлось бы двигаться с околосветовой скоростью.