Наполеон умер в 1821 году. Через три года после смерти величайшего из французов, его соотечественник Сади Карно описал циклический процесс работы тепловой машины названный затем его именем. Он впервые показал, что полезную работу можно получить только передав энергию от более теплого тела к более холодному, сделав, таким образом, первый шаг к понимаю направленности и односторонности реальных физических процессов во времени. Так интеллектуалы XIX века, как и их первобытные предки, выходили на связь тепла, работы и времени, но теперь они пошли гораздо дальше, заглянув чуть позже в мир, в который древний человек не рисковал соваться.
Собственно то, что сформулировал Карно, стало впоследствии вторым законом термодинамики. Более точно его записал Томпсон в 1851 году: «В природе невозможен процесс, единственным результатом которого была бы механическая работа, полученная за счет охлаждения теплового резервуара». Таким образом, окончательно устанавливалась неравноценность и асимметрия физических процессов: работу можно было превратить в тепло полностью, а вот тепло в работу — нет. Более того, стало ясно, что физические тела содержат скрытую энергию, которая ни при каких обстоятельствах не сможет быть превращена в работу. Это хоронило все надежды создателей т. н. «вечного двигателя второго рода». А как все захватывающе начиналось! Поправка закона сохранения механической энергии на тепло, т. е. введение первого закона термодинамики, давало повод для оптимизма. Ведь если тепло — та же энергия, то почему мы не можем ее забрать и превратить в полезную для себя работу? И если не получается сделать чисто механический или тепломеханическй движок, то почему бы не реализовать тепловой, тем более что открытые законы сохранения его создания никак не запрещали. Почему бы не отбирать тепло у морской воды? Пошли глобальные проекты. Например, использовать энергию земного тепла. Земля ведь, как известно, внутри даже не теплая — раскаленная! Быстро прикинули по формуле Q=cm(t2 — t1) что если понизить температуру земли хотя бы на полградуса, то при массе m=6*1024 кг и средней удельной теплоемкости с=840 Дж /(кг*К), мы получим количество теплоты Q=2,5*1027 Дж. Много это или мало? Много. Очень много. В 2000-ом году мировое потребление всех энергоресурсов составило примерно 5*1020 Дж, т. е. нам, по нынешним масштабам потребления, хватило бы этой энергии на 5 миллионов лет. А если понизить температуру еще на полградуса, то на 10 миллионов. Учитывая, что внутри земного шара температура составляет тысячи градусов, можно считать такой «движок» вечным. Но он, увы, невозможен. За все нужно чем-то расплачиваться, причем непрерывно, это — сущность диссипативной системы.
Итак, век «огня и пара» вывел термодинамику в доминирующее направление, отодвинув на второй план механику, завершенную в XVII веке Ньютоном. Тем не менее, исходного определения тепла вообще не существовало, несмотря на то, что еще древние связывали тепло с некой разновидностью движения. Уже был поправлен закон сохранения механической энергии учитывающий и тепловые процессы, а вопрос что обуславливает степень нагрева предмета, оставался открытым. Поразительно, но первые состоятельные гипотезы, позже оформленные Больцманом в кинетическую теорию газов, были выдвинуты тогда, когда были обозначены основные принципы поведения толпы. В наше время появился термин «температура толпы», взят он явно из термодинамики и объяснений не требует, вспомним расхожие выражения «разгоряченная толпа» или «подогретая толпа». А тогда было показано, что температура вещества — это мера движения его молекул. Молекулы движутся хаотично, соударяются друг с другом и их средняя результирующая скорость как раз и оказывается пропорциональной температуре. Vср2=(3kT/m) (k — постоянная Больцмана, T — температура в Кельвина, m — масса молекулы). Это был первый шаг к переходу к статистическим оценкам, когда результирующее действие системы оценивалось как сумма воздействий большого множества составляющих. Причем кинетическая теория не давала, например, ответа с какой скоростью может двигаться та или иная молекула или какой диапазон этих скоростей. Теоретически, скорость может быть любой, важен суммарный (точнее — среднестатистический) результат. Точно как в толпе, которая выравнивает всех индивидов вне зависимости от их параметров.