Надо прямо сказать, что исследовательские лаборатории китайского института SARI были «на высоте» — широко применялись лазерные бесконтактные средства измерения, инженерные кадры тоже хорошо подготовлены: частично еще в СССР, а во многом уже на Западе, где на передовых фирмах они проходили стажировку. Оборудование на шеньянском заводе ведущей моторостроительной компании «Лимин» — новейшее. Почему же Китай не создал своего собственного авиадвигателя даже не пятого, а «хотя бы» четвертого поколения или поколения 4+? И вот здесь, кажется, мы наблюдаем влияние некоторых особенностей китайского менталитета — малую склонность к риску и стремление все делать по правилам или шаблону. А при создании двигателя приходится рисковать — все обосновать и согласовать с начальством не удастся. В последнее время стал действовать и еще один дестабилизирующий фактор — быстрый карьерный рост молодых руководящих кадров в китайской авиапромышленности (это мы наблюдаем сегодня и в России). В результате — слабая компетентность при принятии решений и отсутствие мотивации к постепенному наращиванию инженерной компетентности. В Китае, как и в России, все теперь хотят быть, и хотят быть быстро, «менеджерами». А инженерами быстро не становятся и потому это не престижно. Тем не менее компания «Лимин» к 2005 г. разработала WS10А «Тай-Хан», аналог советского двигателя четвертого поколения АЛ-31Ф для Су-ЗОКК («коммерческий китайский») и собственных самолетов воздушного боя: одноместного J-10 и двухместного J-11 (аналог Су-27). Хотя турбина низкого давления получилась двухступенчатой (вместо одноступенчатой на АЛ-31Ф) и сопло с изменяемым вектором тяги китайские товарищи сделать пока не сумели. Двигатель «Тай-Хан» был продемонстрирован на выставке Аэрошоу Чайна в Джухае в ноябре 2008 г.
Как раз в это время в США и создавали самолеты и двигатели пятого поколения. Основным принципом проектирования двигателей пятого поколения в сравнении с предыдущим было уменьшение количества деталей на 40 %. Если сравнить двигатели F-100PW и F-119PW, то можно увидеть в последнем случае кардинальное уменьшение количества ступеней турбины, а именно переход от схемы 2+2 к предельной схеме 1+1, т. е. каждый ротор компрессора приводится во вращение одной ступенью турбины. Ближайший конкурент американцев турбина АП-31Ф также имела схему 1+1.
Такое радикальное (в два раза) уменьшение числа ступеней турбокомпрессора с сохранением кпд стало возможным только на базе развитого математического моделирования аэродинамики, или 3D (трехмерных) моделей течения. Чисто экспериментальным способом синтезировать сложные конфигурации профилей лопаток было бы невозможно. Здесь и США, и Европа опередили нас и, надо сказать, по нашей же недальновидности (т. е. недальновидности нашей системы управления авиационной наукой). Предпосылки же для создания отечественной системы проектирования в виртуальной трехмерной реальности были начиная с середины 1970-х гг.
В 1976 г. ученый из Харькова В. Н. Гнесин впервые опубликовал статью с инновационной разработкой трехмерной нестационарной модели статор-ротор взаимодействия в ступени турбины, на базе которой можно было создать ту самую виртуальную реальность. Учитывая высокий уровень советской научной школы в области газовой динамики, задача была вполне решаема, если бы… такая задача была поставлена и создана сетевая система разработчиков (по европейскому типу) для ее решения. Но, как всегда, тогда победила научная бюрократия и связанная с ней ведомственная амбициозность.
В этом раунде «войны моторов» победу за первенство по очкам можно присудить американцам. Но… борьба продолжается. Играть в высшей лиге само по себе престижно, пусть и не на первом месте. Ведь задачи обеспечения обороноспособности в воздушном пространстве никуда не исчезли. Проблемой же в России, как всегда, остается внятная и просчитанная стратегия на годы вперед с учетом имеющихся возможностей. Какие самолеты нам нужны? В каком количестве? Раньше в эпоху СССР было «проще»: смотрели на соперника — США и делали с некоторым лагом (5–8 лет) то же, что и он. Теперь пора думать самостоятельно.