В идущей в мире бескомпромиссной «войне моторов» невозможно победить без соответствия мировому уровню в применяемых технологиях проектирования двигателей. Сегодня проектирование ведется в «виртуальной реальности» (VR — virtual reality). Ниже мы дадим несколько впечатляющих примеров современных методов проектирования газотурбинных двигателей, в разработке которых принимал участие и автор настоящей книги. Следует отметить, правда, что полностью задача создания новой технологии проектирования еще не решена — требуются большие усилия ученых и инженеров, чтобы эта технология стала повседневной и, что самое важное, всеобщей практикой инженерного проектирования. Но многие элементы этой суммы технологий уже реально действуют в конструкторских бюро. Конечно, новая технология проектирования не упраздняет полностью предыдущую, термодинамическую, но ограничивает ее применение начальным этапом, когда требуется быстро просматривать десятки и сотни вариантов конфигураций будущего двигателя.
Сегодня уже на слуху 3D фильмы, компьютерная анимация и другие технологии создания визуальных образов. В технологии проектирования технических систем все эти 3D и 4D (с движением) технологии появились на двадцать лет раньше. Геометрия стала полностью аналитической и цифровой. Великая инновация Рене Декарта, связавшая любую точку пространства с тройкой чисел (координат), лежит в основе сегодняшней 3D технологии. Сегодня реализована полностью безбумажная технология проектирования и документооборота.
Возможность решать математические задачи численно (не аналитически), появившаяся в начале XX века в том числе в результате разработок соответствующих методов российскими учеными (потребность в этих методах возникла при проектировании броненосцев методами строительной механики — Галеркин и Бубнов) в сочетании с быстродействующими ЭЦВМ, допускающими параллельные вычисления (кластеры), привела к революции в проектирования двигателей. Сегодня [52], например, становится возможным еще на стадии проектирования спрогнозировать такие опасные и непредсказуемые ранее явления, как резонансные и автоколебательные (флаттер) поломки лопаток, и принять соответствующие меры до изготовления «железа» и испытаний. Наконец, проектирование малоэмиссионной камеры сгорания газотурбинного двигателя стало невозможным без интенсивного математического моделирования физических процессов в ней. Виртуальная реальность стала полем битвы непрерывно идущей «войны моторов». Примеров успешного решения проблем проектирования узлов двигателя и анализа реальных дефектов с помощью системы развитых математических моделей можно привести множество.
Наконец, другим полем битвы сегодня является создание новых конструкционных материалов и даже не столько синтезирование их новых свойств, как то: более высокая термопрочность, удельная прочность (т. е. отношение предела прочности к удельному весу материала) и т. п., но и их сертификация. А вот для сертификации материалов необходимо провести огромный объем испытаний образцов материалов на специальных нагружающих машинах, чтобы определить статистически значимый случайный разброс этих свойств от номинального значения. Если учесть, что испытания, например, на многоцикловую усталость требуют 106 циклов нагружения каждого образца, то становится понятно, что «война моторов» отныне ведется и в лабораториях прочности, где непрерывно идут такие испытания. Поскольку эти испытания весьма длительны по времени, то требуется большой парк этих испытательных машин. Несертифицированные материалы нельзя применять на двигателях — авиакомпания, использующая их в моторах на своих самолетах, легко может попасть в «черный список» ненадежных по безопасности компаний и подвергнуться санкциям в виде запрета полетов на наиболее выгодных трассах.