Выбрать главу

ГИПЕРЗВУК

Где еще существует ниша применения авиационных технологий, т. е. реализации управляемого полета в пределах земной атмосферы? Эта ниша — гиперзвук, т. е. полет со скоростями, в четыре и более (до шести) раз превышающими скорость звука. Как и все технологии, технология гиперзвука — двойная, т. е. гиперзвуковой самолет может быть как гражданского, так и военного назначения. Более того, область гиперзвуковых скоростей может быть использована и для функционирования воздушно-космического самолета.

В 1970—1980-е гг., в эпоху технического оптимизма, в Европе разрабатывались проекты воздушно-космических самолетов с горизонтальным взлетом и посадкой. Эти проекты были прямой конкуренцией американскому «Спейс Шаттлу» («Космическому Челноку»), космическому кораблю многоразового применения. «Челнок», как известно, стартует вертикально с помощью мощного ракетного ускорителя и после выполнения своей миссии приземляется по-самолетному. В Великобритании проект подобного челнока-самолета назывался «HOTOL» (Horisontal Take-Off Landing — «горизонтальные взлет и посадка»). Очевидно, что использование в качестве первой ступени воздушно-реактивного двигателя существенно повысило бы эффективность системы в целом.

В этом случае разгон в слоях атмосферы происходил бы с использованием при горении кислорода самой атмосферы, а не запасенного в баках ракеты.

Если «HOTOL» был проектом полностью ракетного самолета, то в тогдашней Федеративной Республике Германия проект воздушно-космического самолета предполагал применение воздушно-реактивного двигателя на первой ступени. Этот аппарат получил имя «Зенгер» в честь известного немецкого ученого и инженера Ойгена Зенгера, активно работавшего в 1930—1940-е гг. в Германии над созданием ракетных и прямоточных двигателей. Тогда, в 1980-е гг., казалось, что создание воздушно-космических систем вполне возможно. Скорее всего, технически так оно и было. Но эти многообещающие проекты так и не были реализованы по причине дороговизны разработки, непосильной для бюджета одной страны. Тем не менее и сегодня существует возможность возврата к этим проектам на базе международного сотрудничества и соответствующего разделения труда. Сейчас, после завершения концептуально весьма спорной программы американских «челноков», самое время приступить к созданию такой системы. Во всяком случае, для расширения кругозора полезно знать схему вывода на околоземную орбиту космического корабля с применением авиационных технологий.

Для примера рассмотрим вначале схему работы воз-душно-космического самолета «Зенгер». Это — двухступенчатый аппарат: первая ступень представляет собой гиперзвуковой самолет с турбопрямоточной силовой установкой, работающей на водороде, вторая ступень — ракета с жидкостным водородно-кислородным ракетным двигателем. «Зенгер» взлетает по-самолетному с помощью тяги обычных турбореактивных двигателей. Так же по-самолетному набирает высоту 11 км на дозвуковой скорости. На этой точке траектории (Н=11 км, М=0,8) самолет может совершать длительный крейсерский полет (1 — й крейсерский режим полета). Далее начинается разгон до числа Маха 3,5 с набором высоты до 20 км. В этой точке траектории турбореактивный двигатель выключается и капотируется, а вместо него включается прямоточный контур. На траектории имеется еще одна точка (2-й крейсерский режим), параметры полета в которой тоже обеспечивают длительный крейсерский полет (Н=25 км, М=4,5) самолета. Наконец, при достижении высоты 30 км и скорости полета, соответствующей числу Маха полета 6,8, происходит отделение и запуск второй, ракетной ступени. Как мы видим, эта ступень уже разогнана до высокой скорости и, следовательно, для выхода на околоземную орбиту ракете второй ступени потребуется существенно меньший запас энергии (топлива), чем в случае чисто ракетного старта с поверхности земли.

Напомним, что применение углеводородного топлива (керосина) при гиперзвуке ограничено уровнем числа Маха=4 из-за низкой в сравнении с водородом температуры пламени. Из-за этого ограничения с ростом скорости полета и увеличивающегося кинетического подогрева воздуха на входе при его торможении количество подведенного тепла уменьшается и соответственно уменьшается и совершаемая работа и термический кпд (вспомним формулу Карно). Поэтому для достижения эффективного преобразования химической энергии топлива в работу необходимо применять топливо с более высокой температурой пламени горения. Именно таким качеством обладает водород, но и он имеет ограничения по скорости, а именно Мmах= 7. Альтернативой этому является технология… охлаждения воздуха на входе в двигатель с помощью теплообменника-рекуператора с использованием хпадоресурса запасенного в баках горючего (жидкого водорода, имеющего низкую температуру).