Rear Admiral Beshany, commander of the submarine force, began funneling all press inquiries to Craven. But the scientist remained under strict orders to avoid the word lost and even the suggestion of death. It wasn't until another six days had passed with no sign of Scorpion that Beshany and Moorer were forced to accept that Craven and Hardy were right. On June 5, Moorer announced that the Scorpion was "presumed lost." Hours later, the secretary of the Navy formally declared Captain Slattery and his ninety-eight other officers and crewmen legally dead.
But Scorpion was still missing. Without examining the remains of the sub, the Navy would never know what had gone wrong. Without that understanding, the nuclear submarine fleet would forever operate with the fear that a fatal flaw, somehow overlooked, could cause another catastrophe. Absent proof the crewmen were dead, their families might never be able to shake the thought, against all logic and against all available information, that the men might have been captured and were alive somewhere, perhaps in a Soviet prison.
And so began the second phase of the search. Now it was up to Craven and his team to find Scorpion and to find out what killed her. He turned his attention back to the acoustic echoes.
The site of the first explosion-now being called "Point Oscar" marked where his search would begin. But that still left him far from finding the sub. Thermal layers in the water could have distorted the sounds of Scorpion's loss as they traveled to the Canary Islands and the Argentia hydrophones. Craven calculated that there could be ten miles of error for any of the spots mapped by the triangulated data.
Also, the water at Point Oscar was 2 miles deep. The Scorpion would have stopped imploding about 7,000 feet before she hit bottom, cutting off the acoustic trail. Depending on how fast she had been traveling, and in what direction, and depending on the force of implosion and the position of her stern planes as she fell, she could have been thrown miles further.
All that meant that the submarine could be anywhere within a 20mile-wide circle, leaving a vast, unknown universe to search. And the art of deep-sea search was still in its infancy.
In starting the Scorpion search, Craven had far less data than he had when searching for the Soviet Golf in the Pacific. The Navy decided to send a surface ship to comb the area surrounding Point Oscar. There was no thought of sending Halibut on this search; Halibut was a boat designed for secrecy, and there was little need to shroud the fact that the search was going on since the Soviets could easily read about the missing submarine in American newspapers.
Instead, the ship the Navy employed was the USNS Mizar, an oceanographic survey vessel. She was a 266-foot-long former polar supply ship that had been converted to research at the start of the Navy's post-Thresher scramble to the deep. For this mission, she would be under the direction of Hardy's team at the Naval Research Laboratory, where she was based.
Mizar carried towed cameras, less-advanced versions of Halibut's fish, and with those she would start the slow, painstaking survey of the ocean bottom. The search would be led by Chester "Buck" Buchanan, a civilian oceanographer and senior NRL scientist.
As Buchanan set out, he knew he was in for a long haul. Crawling at two knots, it would take Mizar months to cover the area. But the captain was a tracker by nature, short, stocky, and good-naturedly pugnacious. He began to grow a heard the day Mizar left port, a Vandyke, declaring that he would shave only when he found his quarry.
Staying in constant contact with Hardy and Craven as they sorted through the acoustic crumbs, Buchanan began moving Mizar in circles over Point Oscar, finding little more than what seemed to be iron-rich meteorites. Following the Navy's lead, Mizar then began scouring the area west of Point Oscar. The Navy reasoned that since Scorpions had been heading west toward Norfolk, that was the best direction to search.
Meanwhile, Craven began digging for more evidence, anything that could help direct Mizar from shore. He set about trying to map each implosion in the hope that he could figure out how far Scorpion had traveled before the final sounds of her loss subsided.
He found much more.
Craven's map showed that Scorpion had not been traveling west toward Norfolk during her final moments. Instead, Craven's calculations surprisingly showed that the submarine had been moving east, back toward the Mediterranean. Perhaps a submarine could turn if it were fleeing from another boat, but intelligence officials had already told Craven that they were all but certain that the Soviets were not involved. It had to be something else.
The scientist went straight to Beshany's submarine command. He had one question. "What could make a submarine go in the wrong direction?"
Craven asked the same question of several captains and admirals. Each time he got the same answer.
A submarine turns around 180 degrees when a torpedo activates while it is still on board, an event submariners call a "hot run." The boat turns because that triggers fail-safe devices on a torpedo, shutting it down. The same safety devices keep the weapons from turning and blowing up the submarines they are fired from.
Scorpion carried a load of torpedoes, armed and ready for the worst, as did all cold war attack submarines. There were fourteen Mark 37 torpedoes, seven Mark 14s, and two nuclear-tipped Mark 45 Astor torpedoes. Hot runs were particularly common with the Mark 37s, and if there had been a hot run, Slattery would have called "right full rudder," ordering a 180-degree turn the moment the torpedo room reported the problem. Any captain would have-the maneuver is one of those things that are drilled into submariners until the reaction becomes simple reflex. In fact, Scorpion had recovered from a hot run in December 1967, six months before she was lost, precisely because Slattery had followed the standard procedure.
That had to be it, Craven reasoned. Scorpion was traveling west, and that had to mean that something had gone wrong with one of the sub's torpedoes. Somehow it had activated. And somehow it had exploded.
Craven began to dig around. He learned that there was a flaw in the onboard testing equipment that could easily have triggered a hot run. And he learned that torpedoes, along with almost every other piece of equipment on board, are routinely tested as submarines make way for home.
One of Craven's favorite maxims was, "If something can be installed backward, it will be." And in this case, it was true. Several submarines had reported hot runs as a result of electric leads on the test equipment being installed backward. The problem had become common enough that the commander of the Atlantic Fleet issued warnings.
With that known flaw and the acoustic data, it seemed to Craven that Scorpion's fate had been determined. Scorpion had been battling a hot-running torpedo, probably created when somebody mistakenly reversed the leads during a test. Only her turn to the east had been too late. The logic, the evidence-it all fit. Craven was convinced.
There was only one problem: almost nobody else agreed with him. The sonic experts, the torpedo experts, the submarine commanders, all listened as Craven held forth with his theories, his evidence, and his logic, his voice rising and falling as if offering a Shakespearean soliloquy, albeit one punctuated with his own trademark maxims of the deep sea. But nobody of any rank, from the chief of Naval Operations on down, thought Craven could be right.