Выбрать главу

Теперь вы можете спросить: если Вселенная начала свое существование с максимальной энтропией, не нарушает ли это второй закон термодинамики, гласящий, что энтропия в прошлом должна была быть меньше, чем сейчас? Нет, поскольку энтропия в прошлом и была меньше. Но тогда, спросите вы, как она могла быть меньше в прошлом, если в прошлом она была максимальной?

Очень просто. В планковское время энтропия была максимальной для сферы планковских размеров. По мере того как Вселенная расширялась в большом взрыве, увеличивалась и ее максимально возможная энтропия. Так что с планковского времени в ней появилось достаточно места, чтобы могли сформироваться локальные структуры, а потеря локальной энтропии при формировании структур компенсируется ростом энтропии среды, то есть всей остальной Вселенной.

Квантовая гравитация

Принято считать, что мы даже в теории не сможем описать события, происходившие до планковского времени, пока не разработаем квантовую теорию гравитации, которая вместит в себя все преимущества как квантовой механики, так и общей теории относительности. В настоящий момент квантовая теория поля включает специальную теорию относительности, но не общую.

Первые шаги в квантовой гравитации, сделанные Ричардом Фейнманом и другими в 1950-е, следовали образцу весьма удачной квантовой электродинамики. На место фотона со спином 1, который является носителем электромагнитного взаимодействия, был предложен безмассовый гравитон со спином 2, который должен был выполнять функцию носителя гравитационного взаимодействия между двумя массами.

Но этот математический аппарат просто не сработал, требуя других подходов, которым еще предстоит принести плоды{326}. Большая их часть сильно зависит от суперсимметрии и может рассыпаться в прах, если суперсимметрия не подтвердится на БАК. В их числе теория струн, на которой практически целое поколение физиков-теоретиков построило собственную научную карьеру.

Гравитация определенно совсем не похожа на две остальные силы. Вы часто можете услышать даже от именитых физиков: «Гравитация в 10м раз слабее электрических сил». Но это число представляет собой всего лишь отношение сил взаимодействий между протоном и электроном и не во всех случаях верно. Если вместо них вы возьмете две частицы с теми же электрическими зарядами, но с массами, равными, скажем, планковскои массе (величине более естественной, чем масса протона или электрона), то гравитация окажется в 137 раз сильнее, чем электрическая сила! Просто не существует никакого способа определить абсолютную силу гравитации так же, как это возможно для других взаимодействий.

Однако я могу предложить простое объяснение тому, что гравитация в масштабе элементарных частиц настолько слаба по сравнению с электромагнетизмом. Их собственные массы малы, они рождаются с нулевой массой и приобретают небольшую массу благодаря хиггсовскому механизму, описанному в главе 11. Я объясню это более подробно в главе 16.

Также следует вспомнить, что в общей теории относительности Эйнштейна явление гравитации происходит из кривизны пространства и в уравнениях не участвует никакая явная гравитационная сила. В данной модели Земля находится на орбите вокруг Солнца не потому, что сила гравитации Солнца притягивает ее посредством обмена гравитонами или чем бы то ни было, — она просто следует естественному пути, которому должна следовать в отсутствие всяких сил, — геодезической линии через пространство-время, которая как раз закругляется вокруг Солнца. Позже было высказано предположение, что гравитация может быть описана как «производное» явление, которое вытекает из стремления систем двигаться в сторону большей энтропии (см. обсуждение производности в главе 5){327}.

Даже если бы у нас была квантовая теория гравитации, похоже, что у нас не было бы возможности проверить ее предсказания в планковском состоянии, в котором она предположительно применима. Тем не менее квантовая гравитация вполне может иметь измеримые эффекты. Например, на расстояниях, близких к планковским, пространство-время должно быть «бугристым», то есть вместо гладкого континуума мы должны увидеть знаменитую квантовую пену, предложенную Джоном Уилером в 1955 году{328}.