В основе этих интерпретаций лежит фундаментальная предпосылка, что отдельные физические события не предопределяются законами физики, как в ньютоновской механике, а происходят спонтанно. Однако статистическое поведение групп похожих событий предопределено, и именно это описывает математическая модель.
Например, если атом в возбужденном состоянии переходит в более низкое энергетическое состояние и испускает фотон, это конкретное событие не предопределено, что на практике значит, что оно непредсказуемо. Однако интенсивность конкретной линии спектра, которая образуется от большого количества фотонов, участвующих в таком же переходе, может быть вычислена точно.
Аналогично ни одна существующая теория не может предсказать, что конкретное радиоактивное ядро распадется в определенный момент, но гипотеза о том, что такой распад может с равной вероятностью произойти в любой момент заданного временного интервала, дает «закон» экспоненциального радиоактивного распада, который соблюдается с исключительной точностью, По сути, и этот результат, и описанный ранее случай изомерного перехода обеспечивают строгие эмпирические свидетельства того, что эти процессы не предопределены. То есть эти события случайны не из-за нашего невежества. Они действительно случайны.
Для нашего разговора о множественных мирах принципиально, что копенгагенская интерпретация считает измерительные приборы классическими системами, поэтому акт измерения представляет собой переход от квантовой физики к классической, который не описывается теорией, но подразумевается при акте измерения. До того как измерено положение частицы, волновая функция дает вероятности для области пространства, о которой известно, что в ней находится частица. Если ничего не известно, частица может быть где угодно во Вселенной. После измерения становится известно, что частица находится в пределах детектора, и говорят, что волновая функция мгновенно схлопывается, давая новую вероятность. Это проиллюстрировано на рис. 15.3.
Эйнштейн возражал против самой идеи мгновенного схлопывания волновой функции, называя его «жутким дальнодействием»{348}. Схлопывание волновой функции должно происходить быстрее скорости света, по сути, с бесконечной скоростью.
Большинство распространенных интерпретаций квантовой механики обычно называют детерминистическими в том смысле, что статистические вероятности, которые даются волновой функцией или вектором состояния, предопределены в теории подобно тому, как движение частицы предопределено в ньютоновской механике. Однако в данном случае статистически определено коллективное поведение ансамбля идентичных систем, а не поведение отдельной системы. Я предпочитаю называть квантовую механику недетерминистической.
Теперь давайте рассмотрим некоторые альтернативные точки зрения. В 1950-е Дэвид Бом предложил интерпретацию квантовой механики, основанную на значительно более ранней идее Луи де Бройля, в которой движение частиц предопределено. Это движение управляется скрытыми субквантовыми силами, которые де Бройль назвал «волнами-пилотами»{349}. Хотя модель, основанная на этой интерпретации, в принципе детерминистична, она не предсказывает движение отдельных частиц. Она дает все те же статистические предсказания, что и все остальные интерпретации{350}.
В своей докторской диссертации 1957 года, защищенной в Принстонском университете, Хью Эверетт III представил блестящую новую математическую формулировку квантовой механики. В ней он исключил искусственное разграничение между сферами действия квантовой и классической физики, которое существовало в копенгагенской интерпретации, а также отделался от коллапса волновой функции{351}. И то и другое было значительным улучшением. Формулы Эверетта включали детектор вместе с наблюдаемым объектом в полную квантовую систему и заключали в себе все возможные результаты эксперимента.