Однако Килеру недолго довелось поработать с этим инструментом. Из-за разногласий со строгим директором Ликской обсерватории, выпускником Военной академии США, в 1891 году Килер перевелся в обсерваторию «Аллегени». Там, несмотря на менее качественное оборудование и затянутое заводским дымом небо Питтсбурга, ему удалось совершить важное открытие, которое принесло ученому международную известность. Килер при помощи спектрального анализа подтвердил теорию Джеймса Клерка Максвелла (1831–1879) о том, что кольца Сатурна состоят из мелких объектов, вращающихся вокруг планеты с разной угловой скоростью.
В 1898 году Килер вернулся в Ликскую обсерваторию, чтобы занять место предыдущего непопулярного директора. Там он отремонтировал еще один 36-дюймовый телескоп, так называемый телескоп Кросли, подарок британского политика Эдварда Кросли, считавшийся рухлядью. Однако Килеру удалось его наладить. Когда телескоп пришел в рабочее состояние, Килер стал делать с его помощью прекрасные снимки спиральных туманностей. Это стало ключом еще к одной двери в изучении космоса. Но Килер, к сожалению, не смог войти в эту дверь, поскольку умер в 1900 году, незадолго до своего 43-летия{87}.
Глава 5.
ТЕПЛОТА, СВЕТ И АТОМЫ
Термодинамика
Двумя важнейшими открытиями физики XIX века, практическую и космологическую значимость которых трудно переоценить, стали термодинамика и электромагнетизм. С наступлением промышленной революции появилась потребность в детальном изучении механизма работы тепловых двигателей и возникла новая наука термодинамика, описывающая результаты исследования тепловых явлений. Основанная исключительно на наблюдениях макроскопических механических систем, в которых происходит теплообмен и обмен работой, термодинамика эволюционировала в весьма сложную техническую науку, изучающую измеримые величины, такие как температура, давление и плотность.
Два основных постулата термодинамики — это ее первый и второй законы (или начала).
ПЕРВЫЙ ЗАКОН ТЕРМОДИНАМИКИ
Изменение внутренней энергии системы равно разности теплоты этой системы и выполненной ею работы.
Первое начало термодинамики следует из закона сохранения энергии, который вывели в согласовании с принципами этой науки. Теплота рассматривалась как форма энергии, в то время как работу еще раньше определили как полезное приложение силы. Если вы прикладываете к телу силу, чтобы увеличить его скорость, работа, совершенная над телом, равняется увеличению его кинетической энергии (энергии движения). Бели на тело действует сила трения, замедляющая его движение, потеря кинетической энергии проявляется в теплоте трения.
ВТОРОЙ ЗАКОН ТЕРМОДИНАМИКИ
Энтропия замкнутой системы с течением времени должна либо оставаться неизменной, либо нарастать.
Второй закон изначально был сформулирован в контексте функционирования двигателей и холодильников, чтобы объяснить тот факт, что эффективность их работы не может быть абсолютной, несмотря на то что абсолютная эффективность не противоречит закону сохранения энергии. Иными словами, двигатель не может превратить 100% сообщаемой ему тепловой энергии в работу. В противном случае можно было бы построить вечный двигатель, получающий всю необходимую энергию из внешней среды. Аналогично холодильник или кондиционер не могут изменить температуру, не совершая работы. Иначе их не требовалось бы подключать к электрической розетке. В1865 году Рудольф Клаузиус (1822–1888) заново сформулировал эти законы в контексте абстрактной величины, называемой энтропией, которая является показателем неупорядоченности системы.
Влияние термодинамики на представления людей XIX века о мире было огромным, особенно того, что касается ее связи с богословскими вопросами. Многие философы и богословы тех времен обратились к первому и второму началам термодинамики, чтобы найти в них подтверждение гипотезы конечной, сотворенной Вселенной. К первому закону обращались, чтобы доказать, что внутренняя энергия Вселенной, состоящая из потенциальной энергии гравитационного притяжения и кинетической энергии (энергии движения), должна иметь источник, находящийся за пределами Вселенной.