Еще одно следствие теории Максвелла заключалось в том, что границы электромагнитного спектра до неизвестной степени шире его видимой части, которая охватывает излучение с длиной волны от 430 нм (фиолетовый свет) до 700 нм (красный свет) как в коротко-, так и в длинноволновую сторону. Ниже фиолетовой части спектра находится ультрафиолетовое излучение, а выше красной — инфракрасное. Перед ультрафиолетовым излучением расположено рентгеновское, а до него — гамма-излучение. За инфракрасным излучением в спектре располагаются радиоволны. В 1887 году немецкий физик Генрих Герц (1857–1894) отправил электромагнитный сигнал с длиной волны 8 м, которая в 1 млрд. раз длиннее волн видимого спектра, и определил, что это излучение также движется со скоростью света.
Современная астрономия имеет дело с электромагнитным диапазоном от гамма-лучей с длиной волны всего лишь 10-18 м (мне доводилось участвовать в наблюдении гамма-излучения) до радиоволн с длиной волны несколько километров.
Длина световой волны обычно обозначается греческой буквой λ. Эта величина представляет собой расстояние между двумя соседними гребнями волны. Частота волны f — это скорость, с которой гребни волны проходят через заданную точку. Для световых волн fλ = c, где c — это скорость распространения света в вакууме. Это выражение справедливо для волн вообще, в таком случае с обозначает скорость распространения волны.
Атомы и статистическая механика
XIX век ознаменовался не только развитием термодинамики и электромагнетизма, но и внедрением атомной теории для объяснения свойств вещества, заключенного в объеме. Начиная с работ Джона Дальтона (1766–1844) на заре XIX века, химики разрабатывали атомную теорию строения вещества, вершиной которой стало появление периодической таблицы химических элементов, предложенной российским химиком Дмитрием Менделеевым (1834–1907). Однако у химиков не было эмпирических оснований отождествлять открытые ими атомы с атомами древних греков, положенными, как говорится в главе 2, в основу ньютоновской механики. Единственной общей чертой химических атомов и частиц древних атомистов была их неделимость (греч. atomos). Их назвали элементами, поскольку химики не могли разделить их на более простые составляющие{96}.
Тем временем физики оставались приверженцами своей теории частиц. Австрийский физик Людвиг Больцман (1844–1906) наряду с Максвеллом и американским физиком Джозайей Уиллардом Гиббсом (1839–1903) разработали теорию статистической механики, основанную на представлении о том, что вещество состоит из частиц. Все законы термодинамики основаны на предположении, что макроскопическое тело состоит из огромного количества мельчайших частиц, движущихся преимущественно случайным образом, сталкивающихся друг с другом и со стенками окружающего их сосуда согласно законам ньютоновской механики.
Законы термодинамики, таким образом, считаются производными — не фундаментальными принципами природы, но законами, вытекающими из фундаментальных принципов. В самом деле, любые законы, регулирующие работу системы, состоящей из множества частиц, к примеру из области гидродинамики, физики конденсированного состояния, химии, биологии, нейробиологии и даже общественных наук, могут рассматриваться как производные. Даже гравитацию сейчас предлагают рассматривать скорее как производное явление, нежели как фундаментальную силу (см. главу 15).
В рамках статистической механики не делалось попыток описать движение отдельных частиц. Это было бы невозможно. Вместо этого она предсказывала поведение системы частиц в среднем, используя для этого статистические методы. Таким образом, давление на стенку сосуда отождествлялось со средним значением силы, приложенной на единицу площади частицами, сталкивающимися с этой стенкой за единицу времени. Абсолютная температура (в Кельвинах) была определена как средняя кинетическая энергия частиц в равновесной системе.
Статистическая механика отождествляла химические элементы с физическими частицами-атомами. Химические соединения, состоящие из элементов, определялись как молекулы, которые формируются вследствие соединения атомов.