Заявление Эддингтона, сделанное в 1919 году, попало на первые полосы всех газет и более, чем что-либо другое, поспособствовало превращению Эйнштейна в легенду XX века. Он стал единственным ученым в мире, удостоенным чести торжественного проезда по улицам Манхэттена во время своего визита туда в 1921 году.
Результаты измерений Эддингтона также были поставлены под сомнение, однако расчеты Эйнштейна с тех пор подтверждались немалое число раз. Один из самых популярных вариантов научного круиза в наши дни — отправиться наблюдать полное солнечное затмение, которое зачастую происходит над открытым океаном. Астроному обычно не составляет труда присоединиться к такому круизу, все расходы компенсируются, ему нужно только прочитать несколько лекций и сделать ряд наблюдений, наслаждаясь при этом всеми удобствами.
Позвольте мне немного пофантазировать на тему «а что, если бы?». Предположим, что гравитационное отклонение света можно было наблюдать в 1804 году. Тогда волновая теория света была бы опровергнута, поскольку она не позволяет рассчитать этот эффект, в то время как даже ньютоновская корпускулярная теория позволяет получить значение с небольшой погрешностью, что весьма неплохо для такого слабого эффекта. Тогда отклонение лучей света под воздействием гравитации в совокупности с линейчатыми спектрами, чернотельным излучением и фотоэффектом убедительно опровергли бы волновую теорию электромагнитного излучения.
Эйнштейн также предсказал, что часы в гравитационном поле будут идти медленнее для наблюдателя, находящегося вне этого поля. Этот эффект называется гравитационным замедлением времени и напрямую вытекает из общей теории относительности. Его существование также подтверждено убедительными данными. Если GPS в вашем автомобиле не корректируется с учетом гравитационного замедления времени, он порой будет приводить вас не туда, куда нужно.
Гравитационное замедление времени также подразумевает, что частота света (или любой другой электромагнитной волны) будет снижаться по мере удаления от тела с большой массой. С точки зрения закона сохранения энергии кинетическая энергия фотона равна ħf, где f — это частота соответствующей электромагнитной волны, a ħ — постоянная Планка, к которой мы вернемся позднее. По мере того как фотон удаляется от тела, он приобретает потенциальную энергию, теряя кинетическую, вследствие чего и уменьшается частота излучения.
Со времен первоначальных расчетов Эйнштейна, то есть почти за 100 лет, общая теория относительности множество раз подвергалась все более изощренным проверкам. В настоящее время она соотносится со всеми результатами наблюдений, в которых фигурирует гравитация{101}.
Черные дыры
Еще в XVIII веке Джон Мичелл (1724–1793) и Пьер Симон Лаплас заметили, что гравитационное поле тела может быть настолько сильным, что свет не сможет вырваться из него. В 1916 году Карл Шварцшильд доказал, исходя из общей теории относительности, что тело массой М и радиусом менее R = 2GM/c2 не даст свету покинуть свое гравитационное поле. Для объекта массой, равной массе Солнца, радиус Шварцшильда равен примерно 3 км. В 1967 году физик Джон Уилер окрестил эти объекты черными дырами. Как мы вскоре увидим, есть множество доказательств существования черных дыр, и такие сверхмассивные объекты находятся в центре большинства, если не всех крупных галактик, включая Млечный Путь.
В 1974 году Стивен Хокинг доказал, что черные дыры на самом деле излучают фотоны, поэтому они нестабильны и в конечном итоге разрушаются{102}. Однако срок жизни черной дыры астрономических размеров очень велик. Черная дыра массой, равной массе Солнца, просуществует 1063 лет. В то же время микроскопические черные дыры живут очень недолго, но, хотя поиски их предполагаемого излучения продолжаются, обнаружить его пока не удалось.