Выбрать главу
Рис. 8.1. Статическая Вселенная Эйнштейна. Четырехмерная гиперсфера, изображенная в трехмерной системе координат (убрано одно из пространственных измерений), из-за чего она принимает вид цилиндра. У нее нет ни начала, ни конца. Авторская иллюстрация

Разумеется, можно возразить, что расширяющаяся Вселенная никак не может быть статической. Мир де Ситтера называют статическим, потому что он расширяется и всегда будет расширяться равномерно экспоненциально. В этой модели плотность энергии постоянна, поскольку Вселенная расширяется и общая внутренняя энергия со временем увеличивается. Закон сохранения энергии при этом не нарушается, поскольку внутреннее давление, соответствующее космологической постоянной, отрицательно. Если рассматривать эту модель Вселенной как термодинамическую систему, она работает сама на себя.

Рис. 8.2. Вселенная де Ситтера, одно из пространственных измерений убрано. Представляет собой экспоненциально расширяющуюся сферу, не содержащую материи. Космологическая постоянная имеет положительное значение, равное постоянной плотности энергии. Авторская иллюстрация

График, изображенный на рис. 8.2, показывает, что Вселенная де Ситтера не имеет ни начала, ни конца. Линия под верхушкой конуса соответствует бесконечно сужающемуся диаметру конуса, если двигаться в отрицательную сторону по оси времени. Однако, как мы вскоре увидим, позднее было доказано, что инфляционное расширение Вселенной должно было иметь начальную точку, хотя этому моменту мог предшествовать процесс сжатия.

Эйнштейн был недоволен решением де Ситтера. Кроме того, Вселенная не пуста{122}. Де Ситтер предполагал, что его решение, возможно, хорошо работает в некотором приближении в случае, если плотность вещества мала. Как мы вскоре узнаем, он был недалек от истины. Судя по данным измерений плотности энергии и массы, наша Вселенная всего на 26% состоит из вещества и пренебрежимо малого количества излучения. (В главе 10 мы выясним, где и каким образом ученые проводят границу между веществом и излучением.)

Вселенная Фридмана

В 1922 году российский физик и математик Александр Фридман доказал, что пространство и время могут заключать в себе не только статическое, но и динамическое многообразие. Я не буду приводить здесь его оригинальную формулировку, а вместо этого изложу современную общепринятую трактовку идеи Фридмана.

В 1929 году американский физик Говард Робертсон написал ключевую работу по этой теме — «Основы релятивистской космологии», где ввел понятие метрики Робертсона Уокера, также полученной Артуром Уокером в 1935 году, которая определяет все возможные линейные элементы четырехмерного пространства-времени для однородной изотропной Вселенной. Он доказал, что решения Эйнштейна и де Ситтера — единственно возможные статические решения и что уравнения Фридмана работают для всех динамических моделей{123}.

Из гравитационного уравнения Эйнштейна Фридман вывел два новых уравнения, описывающих, как Вселенная может развиваться с течением времени{124}. При условии однородности и изотропности Вселенной уравнения Фридмана позволяют рассчитать зависимость от времени величины a(t), называемой в метрике Робертсона — Уокера масштабным фактором, который описывает расширение или сжатие пространства.

Идею Фридмана зачастую наглядно объясняют на примере надувающегося воздушного шара. Нарисуйте две точки на поверхности частично надутого шарика. Если надуть его сильнее, точки отодвинутся друг от друга, если сдуть — сблизятся. В модели Фридмана двухмерная поверхность трехмерного шарика аналогична трехмерному пространству в четырехмерном пространстве-времени Минковского.

Фридман обнаружил три основных возможных сценария космической эволюции, зависящих от значения коэффициента кривизны k, определяющего общую геометрию трехмерного пространства. Если k = 0, пространство плоское, то есть в нем действует евклидова геометрия. Если k = +1, Вселенная замкнута и представляет собой неевклидово пространство с положительной кривизной, подобное поверхности трехмерной сферы. Если k = -1, Вселенная представляет собой открытый трехмерный гиперболоид, кривизна пространства имеет отрицательное значение и пространство напоминает по форме седло. Любой из этих вариантов можно рассмотреть с точки зрения суммы внутренних углов треугольника: 180° для k = 0, больше чем 180° для k = +1, меньше чем 180° для k = -1.