Выбрать главу

Вайцзеккер также предположил, что с помощью этой теории можно объяснить формирование химических элементов{164}. Однако его модель не давала приемлемого объяснения распространенности элементов в космосе{165}. Но все же физики-ядерщики были достаточно заинтригованы для того, чтобы подключиться к работе по исследованию космоса.

Илем

Большой шаг в сторону укрепления позиций модели Большого взрыва сделал Георгий Гамов, российско-украинский физик, эмигрировавший в США{166}. В 1924 году Гамов прослушал курс лекций Александра Фридмана под названием «Математические основы теории относительности», который тот читал в Ленинграде. Гамов хотел обучаться под руководством Фридмана, но, к сожалению, ученый умер всего год спустя, будучи совсем молодым.

Получив в Геттингене докторскую степень по квантовой теории (он защитил работу по теории атомного ядра), Гамов работал в Копенгагене с Нильсом Бором, затем в Кембридже с Эрнестом Резерфордом, а в 1931 году, в возрасте 28 лет, стал членом-корреспондентом Академии наук СССР. Среди множества его достижений в ядерной физике — количественное доказательство того, что альфа-распад (поток ядер гелия, называемых альфа-частицами) объясняется туннельным эффектом. Этот процесс важен также для реакций термоядерного синтеза, протекающих в звездах. Как мы выясним позже, космологи признали, что этот сугубо квантово-механический процесс мог лежать в основе возникновения нашей Вселенной.

В 1934 году Гамов уехал в США, где работал с Эдвардом Теллером в Университете Джорджа Вашингтона, в городе Вашингтоне. Во время Второй мировой войны Теллер переключился на работу в Манхэттенском проекте. Однако Гамова к работе над атомной бомбой не допустили, поскольку в СССР он получил офицерское звание, необходимое, чтобы преподавать в военной академии. Он остался в Вашингтоне и стал консультантом Военно-морского ведомства США. После войны Гамова допустили к ядерным исследованиям, проводимым в Лос-Аламосе{167}.

Гамов, который продолжал работу в области ядерной физики, проявляя все возрастающий интерес к астрофизике, получил известность также как автор научно-популярных бестселлеров, в том числе «Раз, два, три… бесконечность», «Рождение и смерть Солнца», «Мистер Томпкинс в стране чудес» (в шести томах) и многих других. Будучи подростком, я с жадностью глотал эти книги, и они, без сомнения, повлияли на мое решение стать физиком. Вот еще одно подтверждение невероятной гениальности Гамова: до аспирантуры он даже не говорил по-английски.

В 1948 году Гамов, Ральф Альфер и Ханс Бете опубликовали в журнале Physical Review короткое письмо под названием «Происхождение химических элементов», в котором вернулись к идее о том, что ядра элементов таблицы Менделеева возникли на начальных этапах формирования Вселенной{168}. Бете включили в соавторы, чтобы статью можно было называть «Альфер, Бете и Гамов». Однако Бете, не будучи непосредственным автором работы, все же внес в ее создание существенный вклад. На Леметра и Вайцзеккера авторы статьи не ссылаются.

Альфер, Бете и Гамов предположили, что вначале существовало компактное ядро первичной, очень плотной и горячей субстанции, состоящей из нейтронов, которую они назвали «илем» (ylem). В ходе бета-распада часть нейтронов превратилась в протоны, испустив при этом электроны и, как мы теперь знаем, антинейтрино электронные, устремившиеся прочь из этого сплава частиц.

Затем в процессе воссоединения протонов и нейтронов, называемом нейтронным захватом, образуются химические элементы. В результате этой реакции к смеси добавляются фотоны. Таким образом, протон и нейтрон соединяются, образуя дейтрон (ядро атома водорода с двумя нейтронами). Если добавить к нему еще один нейтрон, получится тритон (ядро водорода с тремя нейтронами). Тритон и протон или два дейтрона могут объединиться в ядро гелия, высвободив при этом большое количество энергии.

Попутно замечу, что попытки осуществить управляемый ядерный синтез основываются именно на этих реакциях, которые требуют более низких температур, нежели процессы, происходящие в недрах звезд. Но даже в этом случае температура невероятно высока, порядка 100 млн. градусов, и, несмотря на более чем 50 лет попыток, этот источник энергии все еще недоступен для нас.

Гамов и его коллеги полагали, что на ранних этапах жизни Вселенной в ходе серии ядерных реакций образовалась вся периодическая таблица химических элементов. Но, несмотря на все их усилия, выходило, что этот процесс не будет идти дальше. Если добавить нейтрон к ядру гелия, стабильного ядра из пяти нуклонов не образуется. Соединение двух ядер гелия также не дает в результате стабильного ядра из восьми нуклонов.