Выбрать главу

Хотя это выглядело так, будто путем чистого размышления можно получить достоверные сведения о наблюдаемых предметах, но такое «чудо» было основано на ошибке. Все же тому, кто испытывает это «чудо» в первый раз, кажется удивительным самый факт, что человек способен достигнуть такой степени надежности и чистоты в отвлеченном мышлении, какую нам впервые показали греки в геометрии.

* * *

Раз я позволил себе прервать начатый с грехом пополам некролог, я уже не буду стесняться выразить здесь в нескольких фразах свое гносеологическое кредо, хотя кое-что из этого было уже попутно сказано ранее. Эти мои убеждения складывались медленно и сложились много позднее; они не соответствуют тем установкам, которые у меня были, когда я был моложе.

Я вижу, с одной стороны, совокупность ощущений, идущих от органов чувств; с другой стороны, — совокупность понятий и предложений, записанных в книгах. Связи понятий и предложений между собою — логического характера; задача логического мышления сводится исключительно к установлению соотношений между понятиями и предложениями по твердым правилам, которыми занимается логика. Понятия и предложения получают смысл, или «содержание», только благодаря их связи с ощущениями. Связь последних с первыми — чисто интуитивная и сама по себе нелогической природы. Научная «истина» отличается от пустого фантазирования только степенью надежности, с которой можно провести эту связь или интуитивное сопоставление, и ничем иным. Система понятий есть творение человека, как и правила синтаксиса, определяющие ее структуру. Хотя системы понятий сами по себе логически совершенно произвольны, но их связывает то, что они, во-первых, должны допускать возможно надежное (интуитивное) и полное сопоставление с совокупностью ощущений; во-вторых, они должны стремиться обойтись наименьшим числом логически независимых элементов (основных понятий и аксиом), т. е. таких понятий, для которых не дается определений, и таких предложений, для которых не дается доказательств.

Предложение верно, если оно выведено внутри некоторой логической системы по принятым правилам. Содержание истины в системе определяется надежностью и полнотой ее соответствия с совокупностью ощущений. Вернее, предложение заимствует свою «истинность» из запаса истины, содержащегося в системе, его заключающей.

Юм ясно понял, что некоторые понятия, например понятие причинности, не могут быть выведены из опытных данных логическим путем. Кант, убежденный в том, что без некоторых понятий обойтись нельзя, считал эти понятия в их принятой форме необходимыми предпосылками всякого мышления и отличал их от понятий эмпирического происхождения. Я же уверен, что это разграничение ошибочно и не охватывает естественным образом задачу. Все понятия, даже и ближайшие к ощущениям и переживаниям, являются с логической точки зрения произвольными положениями, точно так же, как и понятие причинности, о котором в первую очередь шла речь.

* * *

Возвращаюсь теперь к некрологу. В возрасте 12–16 лет я ознакомился с элементами математики, включая основы дифференциального и интегрального исчисления. При этом, на мое счастье, мне попались книги, в которых обращалось не слишком много внимания на логическую строгость, зато хорошо была выделена везде главная мысль. Все это занятие было поистине увлекательно; в нем были взлеты, по силе впечатления не уступавшие «чуду» элементарной геометрии, — основная идея аналитической геометрии, бесконечные ряды, понятие дифференциала и интеграла. Мне посчастливилось также получить понятие о главнейших результатах и методах естественных наук по очень хорошему популярному изданию, в котором изложение почти везде ограничивалось качественной стороной вопроса (бернштейновские естественнонаучные книги для народа — труд в 5–6 томов); книги эти я читал не переводя дыхания. К тому времени, когда я в возрасте 17 лет поступил в Цюрихский политехникум в качестве студента по физике и математике, я уже был немного знаком и с теоретической физикой.

Там у меня были прекрасные преподаватели (например, Гурвиц, Минковский), так что, собственно говоря, я мог бы получить солидное математическое образование. Я же большую часть времени работал в физической лаборатории, увлеченный непосредственным соприкосновением с опытом. Остальное время я использовал главным образом для того, чтобы дома изучать труды Кирхгофа, Гельмгольца, Герца и т. д. Причиной того, что я до некоторой степени пренебрегал математикой, было не только преобладание естественнонаучных интересов над интересами математическими, но и следующее своеобразное чувство. Я видел, что математика делится на множество специальных областей и каждая из них может занять всю отпущенную нам короткую жизнь. И я увидел себя в положении буриданова осла, который не может решить, какую же ему взять охапку сена. Дело было, очевидно, в том, что моя интуиция в области математики была недостаточно сильна, чтобы уверенно отличить основное и важное от остальной учености, без которой еще можно обойтись.