Рис.6. Голеностопный сустав
Голеностопный сустав: 1 — боковые (наружные) связки голеностопного сустава. 2 — малоберцовая кость, 3 — большеберцовая кость. 4 — таранная кость
Голеностопный сустав во время бега выполняет функцию амортизатора, гася удар от соприкосновения стопы с поверхностью. Мышцы, укрепляющие сустав, в свою очередь, несколько гасят нагрузку на сустав и защищают суставные поверхности малоберцовой, большеберцовой и таранной костей.
Стопа состоит из 26 костей, соединенных между собой суставами. Часть костей стопы являются сесамовидными. Эти мелкие косточки не участвующие в образовании суставов, развиваются в толще сухожилий или мышц и выполняют функцию ролика, блока, помогая таким образом передавать силу сокращения мышцы на кость. Сесамовидные кости обеспечивают сухожилию гладкую поверхность при его сокращении (скольжении), что тоже позволяет мышце развить большую силу. На стопе находятся несколько сесамовидных костей.
Наиболее важные кости расположены в области основания большого пальца и в средней части стопы.
Образованы суставы стопы соединением костей предплюсны между собой - (4 сустава объединяют таранную, пяточную, ладьевидную, три клиновидные, кубовидную кости), костей предплюсны с костями плюсны, сочленением плюсны с фалангами пальцев, сочленением фаланг пальцев между собой. В большинстве суставов стопы практически не осуществляется никаких движений. Это обусловлено тем, что стопа несет большую нагрузку и функционирует как упругий неподвижный свод. Укрепляет стопу длинная подошвенная связка.
Рис. 7. Строение стопы
Строение стопы: 1 — большеберцовая кость, 2 — таранная кость
Выделяют 5 продольных и 1 поперечный свод в строении стопы. Физиологически выделяют два свода — продольный и поперечный. Своды сохраняются благодаря строению костей, а также удерживаются связками и мышцами стопы. Мышцы стопы — активные «затяжки» свода, обусловливают эластичность походки. Во многом благодаря именно своду при ходьбе нагрузка на стопу распределяется равномерно между разными ее отделами. При нарушении функции аппарата стопы она становится плоской и неспособной амортизировать ударные нагрузки.
Глава 2. АРТРОЗ
ПРИЧИНЫ АРТРОЗА
Сустав — это место соприкосновения (соединения) двух или более костей, обеспечивающее подвижность скелета. За некоторым исключением кости, которые образуют сустав, в месте их соприкосновения покрыты толстым слоем гиалинового (суставного) хряща.
Хрящ представляет собой упругую, очень прочную и очень гладкую «прокладку», которая обеспечивает идеальное скольжение сочленяющихся костей относительно друг друга; кроме того, хрящ амортизирует и распределяет нагрузку при движении и ходьбе.
Идеальное скольжение достигается за счет особой физиологии хряща. Во время сжатия жидкость выходит, а после прекращения сжатия вновь заполняет ее полость. Суставная жидкость, обладающая особыми смазывающими свойствами. Эта суставная жидкость образует на поверхности хряща защитную пленку. Толщина слоя защитной пленки зависит от степени нагрузки, то есть от силы давления.
Для хорошего функционирования хрящ на протяжении десятков лет должен обладать одновременно жесткостью, упругостью и податливостью. Сочетание таких противоречивых качеств достигается за счет особого строения хряща. Жесткость хрящу придает каркас из упругих коллагеновых волокон, переплетенных между собой и образующих густую сетку, в которую вплетаются дополнительно особые молекулы — протеогликаны.
Протеогликаны состоят из белка и углеводов; вместе с водой и клетками хондроцитами они образуют податливую основу хряща. Именно протеогликаны способны особенно хорошо поглощать и удерживать в суставе воду.
До 70—80% массы хряща составляет вода. Больше всего воды в хрящевой ткани у молодых людей. С возрастом ее содержание существенно уменьшается, из-за чего хрящ подсыхает и становится менее пружинистым. Кроме того, из-за нехватки влаги хрящ становится более хрупким и склонным к растрескиванию. Клетки хондро-циты занимают меньше 0,1% всего объема хряща, но роль их чрезвычайно важна: они производят новые молекулы протеогликанов и коллагеновых волокон и принимают участие в утилизации состарившихся молекул.