Углерод, у которого в ядре шесть протонов, играет в романтическом мире атомов роль донжуана. Обычно на его внешней орбите четыре электрона, но место есть для восьми, так что можно доставить ему удовольствие, удалив четыре электрона с его внешней оболочки, добавив их туда или позволив ему разделить их с другим атомом. У него большой выбор, и поэтому из углерода можно строить сложные молекулы с кольцами, цепочками и другими экзотическими формами. Благодаря этим мастерским способностям он так важен для химии жизни.
Судя по всему, базовые химические правила универсальны. Мы знаем это, потому что спектроскопы показывают, что многие простые молекулы, которые мы можем найти на Земле, существуют и в облаках межзвездной пыли. Но космическая химия, по-видимому, довольно проста; пока что в межзвездном пространстве не найдено ни одной молекулы, в которой было бы значительно больше сотни атомов. Это неудивительно. В конце концов, в космосе атомы находятся далеко друг от друга, им сложно соединяться. К тому же температуры здесь прохладные, так что энергии активации, которая нужна, чтобы подтолкнуть их к длительным отношениям, мало. Самое удивительное в космической химии то, что здесь способны формироваться не только простые молекулы, из которых образованы планеты, например вода и силикаты, но и такие, из которых строятся живые организмы, например аминокислоты, образующие белки. Более того, сегодня нам известно, что простые органические молекулы весьма распространены во Вселенной, что повышает вероятность существования жизни за пределами планеты Земля.
Четвертый порог. От молекул к спутникам, планетам и солнечным системам
Простые химические молекулы, обращающиеся вокруг молодых звезд, создали условия Златовласки для следующего порога усложнения, послужив строительным материалом для совершенно новых астрономических объектов: планет, спутников и астероидов. По химическому составу планеты более разнообразны, чем звезды, и при этом они гораздо холоднее, поэтому на них образовались идеальные условия Златовласки для сложных химических явлений. И по крайней мере на одной из них (нашей), а может быть, и на многих других эта химия в конце концов породила жизнь.
В течение долгого времени людям была известна лишь одна Солнечная система. Но в 1995 году астрономы обнаружили экзопланеты – планеты, обращающиеся вокруг других звезд нашей галактики. Это удалось сделать, зафиксировав мельчайшие колебания в движении или крошечные изменения яркости звезд, которые можно наблюдать, когда перед звездой проходит планета. С тех пор мы узнали, что планеты есть у большинства из них, так что, возможно, в одной только нашей галактике существуют десятки миллиардов планетарных систем разнообразных типов. К середине 2016 года астрономы нашли более 3000 экзопланет. В течение следующих 10–20 лет исследование других планетарных систем должно дать нам более точные представления о самых распространенных их конфигурациях. Скорее всего, скоро мы сможем изучить атмосферу других планет, а это должно позволить понять, сколько из них пригодны для жизни. Мы уже знаем, что многие имеют примерно те же размеры, что и Земля, и обращаются на таком расстоянии от своей звезды, чтобы на них присутствовала вода в жидкой форме – важнейший для жизни ингредиент.
Открытие экзопланет говорит о том, что четвертый порог, как и третий, был пересечен уже множество раз и впервые это произошло в истории Вселенной довольно рано, возле звезды, которую мы, скорее всего, никогда не найдем. Но теперь нам достаточно много известно о том, как выглядит этот переход.