Опыты в А. т. основываются на принципе обратимости движения, согласно которому перемещение тела относительно воздуха (или жидкости) можно заменить движением воздуха, набегающего на неподвижное тело. Для моделирования движения тела в покоящемся воздухе необходимо создать в А. т. равномерный поток, имеющий в любых точках равные и параллельные скорости (равномерное поле скоростей), одинаковые плотность и температуру. Обычно в А. т. исследуется обтекание модели проектируемого объекта или его частей и определяются действующие на неё силы. При этом необходимо соблюдать условия, которые обеспечивают возможность переносить результаты, полученные для модели в лабораторных условиях, на полноразмерный натурный объект (см. Моделирование, Подобия теория). При соблюдении этих условий аэродинамические коэффициенты для исследуемой модели и натурного объекта равны между собой, что позволяет, определив аэродинамический коэффициент в А. т., рассчитать силу, действующую на натуру (например, самолёт).
Прототип А. т. был создан в 1897 К. Э. Циолковским, использовавшим для опытов поток воздуха на выходе из центробежного вентилятора. В 1902 Н. Е. Жуковский построил А. т., в которой осевым вентилятором создавался воздушный поток со скоростью до 9 м/сек. Первые А. т. разомкнутой схемы были созданы Т. Стантоном в Национальной физической лаборатории в Лондоне в 1903 и Н. Е. Жуковским в Москве в 1906, а первые замкнутые А. т. — в 1907—1909 в Гёттингене Л. Прандтлем и в 1910 Т. Стантоном. Первая А. т. со свободной струей в рабочей части была построена Ж. Эйфелем в Париже в 1909. Дальнейшее развитие А. т. шло преимущественно по пути увеличения их размеров и повышения скорости потока в рабочей части (где помещается модель), которая является одной из основных характеристик А. т.
В связи с развитием артиллерии, реактивной авиации и ракетной техники появляются сверхзвуковые А. т., скорость потока в рабочей части которых превышает скорость распространения звука. В аэродинамике больших скоростей скорость потока или скорость полёта летательных аппаратов характеризуется числом М = v/a (т. е. отношением скорости потока v к скорости звука а). В соответствии с величиной этого числа А. т. делят на 2 основные группы: дозвуковые, при М < 1, и сверхзвуковые, при М > 1.
Дозвуковые аэродинамические трубы. Дозвуковая А. т. постоянного действия (рис. 1) состоит из рабочей части 1, обычно имеющей вид цилиндра с поперечным сечением в форме круга или прямоугольника (иногда эллипса или многоугольника). Рабочая часть А. т. может быть закрытой или открытой (рис. 2, а и б), а если необходимо создать А. т. с открытой рабочей частью, статическое давление в которой не равно атмосферному, струю в рабочей части отделяют от атмосферы т. н. камерой Эйфеля (рис. 2) (высотной камерой). Исследуемая модель 2 (рис. 1) крепится державками к стенке рабочей части А. т. или к аэродинамическим весам 3. Перед рабочей частью расположено сопло 4, которое создаёт поток газа с заданными и постоянными по сечению скоростью, плотностью и температурой (6 — спрямляющая решётка, выравнивающая поле скоростей). Диффузор 5 уменьшает скорость и соответственно повышает давление струи, выходящей из рабочей части. Компрессор (вентилятор) 7, приводимый в действие силовой установкой 8, компенсирует потери энергии струи; направляющие лопатки 9 уменьшают потери энергии воздуха, предотвращая появление вихрей в поворотном колене; обратный канал 12 позволяет сохранить значительную часть кинетической энергии, имеющейся в струе за диффузором. Радиатор 10 обеспечивает постоянство температуры газа в рабочей части А. т. Если в каком-либо сечении канала А. т. статическое давление должно равняться атмосферному, в нём устанавливают клапан 11.
Размеры дозвуковых А. т. колеблются от больших А. т. для испытаний натурных объектов (например, двухмоторных самолётов) до миниатюрных настольных установок.
А. т., схема которой приведена на рис. 1, относится к типу т. н. замкнутых А. т. Существуют также разомкнутые А. т., в которых газ к соплу подводится из атмосферы или специальных ёмкостей. Существенной особенностью дозвуковых А. т. является возможность изменения скорости газа в рабочей части за счёт изменения перепада давления.