Выбрать главу

Аэродинамика зданий

Аэродина'мика зда'ний, научная дисциплина, изучающая воздушные потоки, возникающие около зданий и внутри них под действием ветра, разности температур внутреннего и наружного воздуха, вентиляции и осуществляемых в помещениях производственных процессов (см. также Аэрация зданий).

  Лит.: Реттер Э. И. и Стриженов Е. И., Аэродинамика зданий, М., 1968.

(обратно)

Аэродинамика разреженных газов

Аэродина'мика разре'женных га'зов, раздел механики газов, в котором для описания движения газов необходимо учитывать их молекулярное строение. Методы А. р. г. широко применяют при определении аэродинамического нагрева приземляющихся орбитальных аппаратов, низко летящих спутников Земли, для расчёта теплового режима приборных датчиков ракет, зондирующих верхние слои атмосферы, и т. д. Точный прогноз траекторий околопланетных спутников, испытывающих тормозящее действие разреженной атмосферы, невозможен без знания методов А. р. г., с помощью которых определяются аэродинамические силы и моменты, действующие на летящее в газе тело. А. р. г. изучает также течения газов в вакуумных системах, ультразвуковые колебания в газе и другие проблемы молекулярной физики.

  На больших высотах атмосфера очень разрежена и средняя длина свободного пробега l молекул между двумя соударениями становится сравнимой с характерным размером движущегося в атмосфере тела d (или рассматриваемой области потока). Поэтому методы расчёта течения, применяемые в аэродинамике и газовой динамике, основанные на представлении о газе, как о сплошной среде (континууме), непригодны и приходится прибегать к кинетической теории газа. При высоких температурах газа, имеющих место, например, при очень больших скоростях полёта, течение может сопровождаться эффектами возбуждения молекул, их диссоциацией, ионизацией и т. д. Эти проблемы также изучаются в А. р. г. А. р. г. принято делить на три области:

  1) свободное молекулярное течение,

  2) промежуточная область,

  3) течение со скольжением (рис. 1).

  При свободно молекулярном обтекании у отражённых от тела молекул длина свободного пробега l больше характерного размера тела d, поэтому взаимодействие отражённых молекул с набегающими молекулами вблизи тела незначительно. Это даёт возможность рассматривать падающий и отражённый потоки молекул независимо, что существенно облегчает описание их движения. Движение любой молекулы можно считать как бы состоящим из двух: 1) молекулы участвуют в направленном движении газового потока и их скорость равна скорости потока в целом; 2) одновременно молекулы участвуют в хаотическом тепловом движении и при этом движутся с различными скоростями, значения которых описываются Максвелла распределением. Применение кинетической теории газов даёт принципиальную возможность рассчитать как давление газа на стенку, так и количество тепла, которое она получает или отдаёт при взаимодействии с молекулами газа. Для этого необходимо знать законы отражения молекул от твёрдой поверхности.

  Однако точное математическое описание движения разреженного газа с помощью уравнений кинетической теории представляет значительные трудности. Это заставляет развивать приближённые методы. Например, реальное отражение молекулы от тела заменяется т. н. зеркально-диффузной схемой, согласно которой часть молекул отражается от поверхности тела зеркально, другая — рассеивается диффузно, в соответствии с Ламберта законом (законом косинуса).

  Отношение количества диффузно рассеянных молекул к общему их числу определяет степень диффузности рассеяния, которая характеризуется числом f (при f = 0 происходит только зеркальное отражение, при f = 1 — только диффузное). Для снижения сопротивления летящего тела выгодно зеркальное отражение, а также малые углы падения молекул на поверхность, т. к. при этом увеличивается вероятность зеркального отражения.

  Другим существенным параметром является т. н. коэффициент термической аккомодации а, который характеризует изменение энергии молекулы после её отражения. Значения а могут меняться от 0 до 1. Если после отражения энергия молекулы не изменилась и осталась равной энергии падающей молекулы, то а = 0. Если же средняя энергия отражённой молекулы соответствует температуре стенки, то это значит, что она отдала стенке всю возможную энергию и а = 1. Очевидно, что аэродинамический нагрев тем меньше, чем меньше а.

  Величины f и а — наиболее важные характеристики А. р. г. В общем случае а и f зависят от скорости движения потока газа, материала и температуры стенки, от гладкости её поверхности, наличия на поверхности адсорбированных молекул газа и т. д. Однако точных зависимостей a иf от определяющих их параметров ещё не получено.