Р о (х , у , z , ...)u n + P 1 (x , y , z , ...)u n-1 + … +P n (x , y , z , ...) = 0, (1)
где Р 0 , Р 1 , ..., P n — какие-либо многочлены относительно х , у , z ,... . Всё выражение, стоящее в левой части, представляет некоторый многочлен относительно х , у , z ,... и n . Его можно считать неприводимым, т. е. не разлагающимся в произведение многочленов более низких степеней; кроме того, многочлен P 0 можно считать не равным тождественно нулю. Если n = 1, то u представляет рациональную функцию (u = -P 1 /P 0 ), частным случаем которой — целой рациональной функцией — является многочлен (если P 0 = const ¹ 0). При n > 1 получается иррациональная функция; если n = 2, то она выражается через многочлены с помощью квадратного корня; если n = 3 или n = 4, то для u получается выражение, содержащее квадратные и кубические корни.
При n ³ 5 число каких бы то ни было корней из многочленов. Иррациональная А. ф. всегда многозначна, а именно (при наших обозначениях и предположениях) является n -значной аналитической функцией переменных х , у , z ,...
Лит.: Чеботарев Н. Г., Теория алгебраических функций, М. — Л., 1948.
(обратно)Алгебраическое выражение
Алгебраи'ческое выраже'ние, выражение, составленное из букв и цифр, соединённых знаками действий сложения, вычитания, умножения, деления, возведения в целую степень и извлечения корня (показатели степени и корня должны быть постоянными числами). А. в. называется рациональным относительно некоторых букв, в него входящих, если оно не содержит их под знаком извлечения корня, например
рационально относительно a, b и с. А. в. называется целым относительно некоторых букв, если оно не содержит деления на выражения, содержащие эти буквы, например 3а/с + bc2 - 3ас/4 является целым относительно а и b. Если некоторые из букв (или все) считать переменными, то А. в. есть алгебраическая функция .
(обратно)Алгебраическое дополнение
Алгебраи'ческое дополне'ние, см. в ст. Определитель .
(обратно)Алгебраическое уравнение
Алгебраи'ческое уравне'ние, уравнение, получающееся при приравнивании двух алгебраических выражений . А. у. с одним неизвестным называется дробным, если неизвестное входит в знаменатель, и иррациональным, если неизвестное входит под знаком радикала. Всякое А. у. может быть преобразовано без потери корней к виду a0 xn + a1 xn-1 + ... + an = 0. О решении таких уравнений см. Алгебра и Численное решение уравнений .
Д. К. Фаддеев.
(обратно)Алгебраическое число
Алгебраи'ческое число', число а, удовлетворяющее алгебраическому уравнению a1 an + ... + акa +an+1 = 0, где n ³ 1, a1 , ..., an , an+1 — целые (рациональные) числа. Число a называется целым А. ч., если a1 = 1. Если многочлен f(x) = a1 xn + ... + an x + an+1 не является произведением двух др. многочленов положительной степени с рациональными коэффициентом, то число n называется степенью А. ч. a. Простейшие А.ч. — корни двучленного уравнения xn = а, где а — рациональное число. Например, А. ч. будут рациональные числа, числа
целыми А. ч. будут целые числа, числа
С понятием А. ч. тесно связаны два больших направления в теории чисел. 1) Арифметика А. ч. (алгебраическая теория чисел), созданная Э. Куммером в середине 19 в., изучает свойства А. ч. Целые А. ч. обладают рядом свойств, аналогичных свойствам целых рациональных чисел, однако теорема об единственности разложения числа на простые множители не имеет места в теории целых А. ч. Для сохранения единственности разложения Куммер ввёл в рассмотрение т. н. «идеальные» числа (см. Идеал ). 2) Теория приближения А. ч. изучает степень приближения А. ч. рациональными числами или алгебраическими же числами. Первым результатом в этом направлении была теорема Ж. Лиувилля , показывающая, что А. ч. «плохо» приближаются рациональными числами, точнее: если a - А. ч. степени n, то при любых целых рациональных р и q имеет место неравенство [a - p/q] > C/qn , где С = С(a) > 0 — постоянная, не зависящая от р и q, отсюда следует, что легко построить произвольное количество неалгебраических — трансцендентных чисел .