Выбрать главу

  Лит.: см. при ст. Часть и целое .

  И. В. Блауберг, Б. Г. Юдин.

(обратно)

Целотонная гамма

Целото'нная га'мма, гамма с расстоянием между всеми ступенями в целый тон. Насчитывает 6 звуков в пределах октавы. В юмористических целях применена В. А. Моцартом в «Секстете деревенских музыкантов» (1787). Эпизодически встречается у композиторов-романтиков. Использована М. И. Глинкой в опере «Руслан и Людмила» для характеристики образа Черномора (т. н. «Гамма Черномора»), применялась и др. русскими композиторами (А. С. Даргомыжский, А. П. Бородин), французскими импрессионистами. Постепенно становится основой ладовой организации музыкальных построений, порою и целых пьес (прелюдия «Voiles» Дебюсси), являясь выражением своеобразного увеличенного лада. К середине 20 в. выразительные возможности Ц. г. в основном были исчерпаны, и она стала использоваться очень редко.

(обратно)

Целочисленная решётка

Целочи'сленная решётка, совокупность точек плоскости или пространства, координаты которых в некоторой (прямолинейной) системе координат являются целыми числами. Ц. р. играет важную роль в различных вопросах кристаллографии, теории функций, теории чисел. Например, вопрос о классификации кристаллических систем связан с изучением симметрии Ц. р. В теории функций комплексного переменного совокупность периодов двоякопериодических функций (см. Эллиптические функции ) образует Ц. р. Систематическое использование Ц. р. в теории чисел, начатое К. Гауссом , привело к созданию Г. Минковским геометрии чисел, в которой многие вопросы, связанные, например, с квадратичными формами, приближением иррациональных чисел рациональными и т.д., решаются на основании геометрических соображений. Дальнейшее развитие геометрии чисел дано в работах отечественных математиков Г. Ф. Вороного, Б. Н. Делоне и др. Делоне принадлежат также работы по применению Ц. р. к кристаллографии.

(обратно)

Целые алгебраические числа

Це'лые алгебраи'ческие чи'сла, числа, являющиеся корнями уравнений вида xn + a1 xn-1 +... + an = 0, где a1 ,..., an — целые рациональные числа. Например, x1 = 2 +  — Ц. а. ч., так как x1 2 — 4x1 + 1 = 0. Теория Ц. а. ч. возникла в 30—40-x гг. 19 в. в связи с исследованиями К. Якоби , Ф. Эйзенштейна и Э. Куммера по законам взаимности высших степеней, теореме Ферма и обобщению арифметики целых комплексных чисел . Сумма, разность и произведение Ц. а. ч. являются Ц. а. ч., т. е. совокупность Ц. а. ч. образует кольцо . Однако теория делимости Ц. а. ч. отличается от теории делимости целых рациональных чисел. См. статью Идеал , где рассмотрен пример Ц. а. ч. вида , где тип — целые рациональные числа.

(обратно)

Целые комплексные числа

Це'лые ко'мпле'ксные чи'сла, гауссовы числа, числа вида а + bi, где а и b — целые числа (например, 4 — 7i ). Геометрически изображаются точками комплексной плоскости, имеющими целочисленные координаты. Ц. к. ч. введены К. Гауссом в 1831 в связи с исследованиями по теории биквадратичных вычетов . Успехи, достигнутые в теории чисел (в исследованиях по теории вычетов высших степеней, теореме Ферма и т.д.) с помощью применения Ц. к. ч., способствовали выяснению роли комплексных чисел в математике. Дальнейшее развитие теории Ц. к. ч. привело к созданию теории целых алгебраических чисел . Арифметика Ц. к. ч. аналогична арифметике целых чисел. Сумма, разность и произведение Ц. к. ч. являются Ц. к. ч. (иными словами, Ц. к. ч. образуют числовое кольцо ).

(обратно)

Целый тон

Це'лый тон, высотное соотношение двух звуков; см. Тон .

(обратно)