Диагональная гидротурбина
Диагона'льная гидротурби'на, разновидность поворотно-лопастной гидротурбины. Отличительной особенностью Д. г. является то, что оси лопастей расположены под острым углом к оси вращения гидротурбины (рис. 1), втулка рабочего колеса не стесняет поток, что позволяет увеличивать число лопастей и применять эти турбины на более высокие напоры.
В 1932 американский инженер Д. А. Бигс получил патент на Д. г. Большой вклад в разработку и внедрение Д. г. внесён английским инженером Т. Дериасом и советским учёным В. С. Квятковским.
На рис. 2 показаны сравнительные характеристики Д. г. и радиально-осевой гидротурбины, где h/hmax — отношение кпд в эксплуатационных режимах к максимальному; N/Noпт — отношение мощности в эксплуатационных режимах к оптимальной. Вследствие лучшего обтекания лопастей рабочего колеса и отсасывающей трубы на режимах, заметно отличающихся по нагрузке и напору от расчётных величин, режим потока в Д. г. более спокойный, с меньшими пульсациями, характеристика кпд более пологая и среднеэксплуатационное кпд h — выше. Кавитационные свойства Д. г. несколько хуже, чем у радиально-осевых (см. Кавитация в гидротурбине). Таким образом, Д. г. могут устанавливаться на гидроэлектрических станциях (ГЭС) с напорами до 200 м, вытесняя в этом диапазоне радиально-осевые гидротурбины. Особенно экономичны Д. г. на ГЭС с большими колебаниями напора и мощности.
Рабочие колёса Д. г. широко используются также при изготовлении обратимых гидромашин (насосотурбин) для гидроаккумулирующих электростанций (ГАЭС).
В СССР изготовлена опытная Д. г. мощностью 77 Мвт при напоре 61 м, установленная в 1965 на Бухтарминской ГЭС; разрабатывается (1971) Д. г. мощностью 220 Мвт на напор около 90 м для установки на Зейской ГЭС. За рубежом Д. г. изготавливают главным образом японские фирмы «Хитати», «Тосиба», в Великобритании — фирма «Инглиш электрик».
Лит.: Квятковский В. С., Диагональные гидротурбины, М., 1971.
М. Ф. Красильников.
Рис. 1. Рабочее колесо диагональной гидротурбины.
Рис. 2. Сравнительные характеристики диагональных и радиально-осевых гидротурбин: 1 — диагональная гидротурбина; 2 — радиально-осевая гидротурбина.
Диагональная матрица
Диагона'льная ма'трица, квадратная матрица порядка n, у которой все элементы, расположенные вне главной диагонали, равны нулю.
Диаграмма (в ботанике)
Диагра'мма в ботанике, графическое изображение формы, числа, расположения частей цветка или облиственного побега при проекции их на горизонтальную плоскость. Д. цветка составляют на основании одного или нескольких поперечных разрезов цветочного бутона. Условными знаками в Д. цветка показывают либо только те части, которые видны на разрезе — эмпирическая Д. цветка, либо также недоразвитые и исчезнувшие части — теоретическая Д. цветка, которая строится на основании изучения многих эмпирических Д. Д. побега отражает схему поперечного разреза через вегетативную почку.
Диаграммы: 1 — цветок семейства крестоцветных; 2 — цветок семейства мотыльковых; 3 — накрест-супротивное расположение листьев; 4 — спиральное расположение листьев на стебле с углом расхождения в 120°; 5 — построение диаграммы цветка.
Диаграмма растворимости
Диагра'мма раствори'мости, графическое изображение зависимости между растворимостью компонента (или компонентов) физико-химической системы и её факторами равновесия (составом, температурой, давлением). См. Растворимости диаграмма.
Диаграмма состав - свойство
Диагра'мма соста'в — сво'йство, графическое изображение зависимости между составом физико-химической системы и численными значениями её физических или механических свойств (электропроводности, твёрдости, вязкости, показателя преломления и др.). Д. с. — с., построенная при постоянной температуре, называется изотермой свойства, при переменной температуре — политермой свойства, при постоянном давлении — изобарой свойства, при переменном давлении — полибарой свойства. См. Двойные системы, Жидкие смеси.
Диаграмма состояния
Диагра'мма состоя'ния, диаграмма равновесия, фазовая диаграмма, графическое изображение соотношений между параметрами состояния физико-химической системы (температурой, давлением и др.) и её составом. В простейшем случае, когда система состоит только из одного компонента, Д. с. представляет собой трёхмерную пространственную фигуру, построенную в трёх прямоугольных координатных осях, по которым откладывают температуру (Т), давление (p) и мольный объём (v). Пользование объёмной Д. с. неудобно вследствие её громоздкости; поэтому на практике применяют проекцию Д. с. на одну из координатных плоскостей, обычно на плоскость p — Т.
В качестве простейшего примера на рис. изображена (без соблюдения масштаба) Д. с. двуокиси углерода CO2. Любая точка Д. с. (фигуративная точка) изображает состояние CO2 при температуре и давлении, отвечающих этой точке. Точка О (тройная точка) отвечает равновесию трёх фаз — твёрдой, жидкой и газообразной CO2. В точке О пересекаются три кривые: ОА (кривая возгонки), отвечающая равновесиям твёрдой и газообразной CO2; OK (кривая испарения), отвечающая равновесиям жидкой и газообразной CO2; ОВ (кривая плавления) — твёрдой и жидкой CO2. Эти кривые делят плоскость диаграммы на три поля — области существования трёх фаз: твёрдой S, жидкой L и газообразной G. Точка К отвечает критической температуре CO2 (31,0°С), при которой исчезает различие между свойствами жидкости и газа. Согласно терминологии фаз правила, точке О отвечает нонвариантное равновесие, точкам на кривых ОА, ОВ и ОК — моновариантное равновесие, а точкам на полях S, L и G — дивариантное равновесие. В случае полиморфизма Д. с. усложняется (число тройных точек равно числу полиморфных превращений). О Д. с. систем, число компонентов которых больше 1, см. в статье Двойные системы.
Экспериментальное построение Д. с. осуществляется различными методами физико-химического анализа, термических и рентгенографических анализов, оптической и электронной микроскопии, дилатометрии, измерения электросопротивления, твёрдости и др. свойств. Правильность построения Д. с. проверяется на основании правила фаз, принципа соответствия и принципа непрерывности. Д. с. широко применяют на практике в металловедении, металлургии, химии и др.; например, Д. с. железо — углерод имеет важное значение для термической обработки стали.