Выбрать главу

  После короткого переходного процесса самостоятельный газовый разряд становится стационарным. Обычно такой разряд осуществляют в закрытом изолирующем сосуде (стеклянном или керамическом). Ток в газе течёт между двумя электродами: отрицательным катодом и положительным анодом.

  Одним из основных типов газового разряда, формирующимся, как правило, при низком давлении и малом токе (участок в на рис. 3 ), является тлеющий разряд . Главные четыре области разрядного пространства, характерные для тлеющего разряда, это: 1 — катодное тёмное пространство; 2 — тлеющее свечение; 3 — фарадеево тёмное пространство; 4 — положительный столб. Области 13 находятся вблизи катода и образуют катодную часть разряда, в которой происходит резкое падение потенциала (катодное падение ), связанное с большой концентрацией положительных ионов на границе областей 12. В области 2 электроны, ускоренные в области 1 , производят интенсивную ударную ионизацию. Тлеющее свечение обусловлено рекомбинацией ионов и электронов в нейтральные атомы или молекулы. Для положительного столба разряда вследствие постоянной и большой концентрации электронов характерны незначительное падение потенциала в нём, свечение, вызываемое возвращением возбуждённых молекул (атомов) газа в основное состояние (состояние с наинизшей возможной энергией), и большая электропроводность.

  Стационарность в положительном столбе объясняется взаимной компенсацией процессов образования и потерь заряженных частиц. Образование таких частиц происходит при ионизации атомов и молекул в результате столкновений с ними электронов. К потерям заряженных частиц приводит амбиполярная диффузия к стенке сосуда, ограничивающего разрядный объём, и следующая за этим рекомбинация. Диффузионные потоки, направленные не к стенке, а вдоль разрядного тока, часто ведут к образованию в положительном столбе своеобразных «слоев» (обычно движущихся).

  При увеличении разрядного тока обычный тлеющий разряд становится аномальным (рис. 3 ) и начинается стягивание (контракция) положительного столба. Столб отрывается от стенок сосуда, в нём начинает происходить дополнительный процесс потери заряженных частиц (рекомбинация в объёме). Предпосылкой этого является высокая плотность заряженных частиц. При дальнейшем повышении разрядного тока газ нагревается настолько, что становится возможной его термическая ионизация. Столкновения между атомами или молекулами в этом случае столь сильны, что происходит отщепление электронов. Такой разряд называется дуговым разрядом . С возрастанием тока электропроводность столба повышается, вольтамперная характеристика дугового разряда приобретает падающий характер (рис. 3 ). Следует отметить, что хотя он может «гореть» в широком диапазоне давлений газа и иных условий, в большинстве случаев дуговой разряд наблюдается при давлении порядка атмосферного.

  Во всех случаях особую важность представляет участок перехода между столбом разряда и электродами, причём ситуация у катода сложнее, чем у анода. При тлеющем разряде непрерывная связь между катодом и положительным столбом обеспечивается за счёт сильного катодного падения. В самостоятельном дуговом разряде в результате сильного локального нагрева катода появляются т. н. катодные пятна. В них обычно происходит термоэлектронная эмиссия или более сложная эмиссия электронов из облака испаряющегося материала катода. Процесс эмиссии из катода дугового разряда в настоящее время (1978) ещё не до конца понят и интенсивно исследуется.

  Все рассмотренные выше Э. р. в г. происходят под действием постоянного электрического напряжения. Однако газовые разряды могут протекать и под действием переменного электрического напряжения. Такие разряды имеют стационарный характер, если частота переменного напряжения достаточно высока (или, наоборот, настолько низка, что полупериод переменного напряжения во много раз больше времени установления разряда, так что каждый электрод просто попеременно служит катодом и анодом). Типичным примером может служить высокочастотный (ВЧ) Э. р. в г. ВЧ-разряд может «гореть» даже при отсутствии электродов (безэлектродный разряд ). Переменное электрическое поле создаёт в определённом объёме плазму и сообщает электронам энергию, достаточную для того, чтобы производимая ими ионизация восполняла потери заряженных частиц вследствие диффузии и рекомбинации. Внешний вид и характеристики ВЧ-разрядов зависят от рода газа, его давления, частоты переменного поля и подводимой мощности. Элементарные процессы на поверхности твёрдого тела (металла или изолятора разрядной камеры) играют определённую роль только в процессе «поджига» разряда. Стационарный ВЧ-разряд подобен положительному столбу тлеющего разряда.

  Кроме стационарных разрядов, основные характеристики которых не зависят от времени, существуют нестационарные (импульсные) Э. р. в г. Они возникают по большей части в сильно неоднородных или переменных во времени полях, например у заострённых и искривленных поверхностей проводников и электродов. Величина напряжённости поля и степень его неоднородности вблизи таких тел столь велики, что происходит ударная ионизация электронами молекул газа. Два важных типа нестационарного разряда — коронный разряд и искровой разряд .

  При коронном разряде ионизация не приводит к пробою, потому что сильная неоднородность электрического поля, обусловливающая её, существует только в непосредственной близости от проводов и остриёв. Коронный разряд представляет собой многократно повторяющийся процесс поджига, который распространяется на ограниченное расстояние от проводника — до области, где напряжённость поля уже недостаточна для поддержания разряда. Искровой разряд, в отличие от коронного, приводит к пробою. Этот Э. р. в г. имеет вид прерывистых ярких зигзагообразных разветвляющихся, заполненных ионизованным газом (плазмой), нитей-каналов, которые пронизывают промежуток между электродами и исчезают, сменяясь новыми. Искровой разряд сопровождается выделением большого количества тепла и ярким свечением. Он проходит следующие стадии: резкое умножение числа электронов в сильно неоднородном поле близ проводника (электрода) в результате последовательных актов ионизации, начинаемых немногими, случайно возникшими свободными электронами; образование электронных лавин; переход лавин в стримеры под действием пространственного заряда, когда плотность заряженных частиц в головной части каждой лавины превысит некоторую критическую. Совместное действие пространственного заряда, ионизующих электронов и фотонов в «головке» стримера приводит к увеличению скорости развития разряда. Примером естественного искрового разряда является молния , длина которой может достигать нескольких км, а максимальная сила тока — нескольких сотен тысяч ампер.