Рис. 2. Примеры фазированных антенных решёток с электромеханическим (а), частотным (б) и электрическим (в) сканированием: Щ, — щелевые излучатели; В — прямоугольный возбуждающий волновод; Н — продольная пластина (нож) с управляемой глубиной погружения в волновод (служит для изменения фазовой скорости волны в волноводе); Д — дроссельные канавки; Р — рупоры; СВ — спиральный волновод; ДА — диэлектрические стержневые антенны; Ф — ферритовый стержень фазовращателя; ВВ — возбуждающие волноводы; О — управляющая обмотка фазовращателя; Ш — диэлектрическая шайба.
Рис. 4. Структурные схемы некоторых активных фазированных антенных решёток — передающей (а), приёмной с фазированием в цепях гетеродина (б) и приёмной с фазированием в трактах промежуточной частоты (в): И — излучатель; УМ — усилитель мощности; В — возбудитель; С — смеситель; Г — гетеродин; УПЧ — усилитель промежуточной частоты; СУ — суммирующее устройство; j — фазовращатель.
Рис. 1. Структурные схемы некоторых фазированных антенных решеток (ФАР) — линейной эквидистантной с симметричными вибраторами и общим зеркалом (а); линейной неэквидистантной с полноповоротными зеркальными параболическими антеннами (б); плоской с прямоугольным расположением рупорных излучателей (в); плоской с гексагональным расположением диэлектрических стержневых излучателей (г); конформной с щелевыми излучателями (д); сферической со спиральными излучателями (е); системы плоских фазированных антенных решеток (ж); В — вибраторы; Ф — линии возбуждения (фидеры); З — токопроводящее зеркало (рефлектор); А — зеркальные антенны; Р — рупоры; ВР — возбуждающие радиоволны; Э — металлический экран; Щ — щелевые излучатели; К — коническая ФАР; Ц — цилиндрическая ФАР; С — спиральные излучатели; СЭ — сферический экран; П — плоские фазированные антенные решетки (точками обозначены излучатели); L0 — расстояние между В; l1 , l 2 , l3 — расстояния между А.
(обратно)Фазлул Хак Абул Касем
Фазлу'л Хак, Абул Касем (1873, деревня Сатурия, округ Бакергандж, Бенгалия, – 27. 4. 1962, Дакка), политический и государственный деятель колониальной Бенгалии , затем Пакистана . Адвокат. В 1918 одновременно президент Мусульманской лиги и генеральный секретарь Индийского национального конгресса. В 1924–25 министр просвещения Бенгалии. Основатель (1927) и лидер (до 1947) Крестьянской партии Бенгалии. В 1935–36 мэр Калькутты. В 1937–43 главный министр Бенгалии. В Пакистане в 1953 основал Крестьянско-рабочую партию, возглавил Объединённый фронт оппозиционных партий Восточной Бенгалии. В 1955–56 министр внутренних дел и просвещения Пакистана, в 1956–58 губернатор Восточного Пакистана.
(обратно)Фазовая модуляция
Фа'зовая модуля'ция, вид модуляции колебаний , при котором передаваемый сигнал управляет фазой несущего высокочастотного колебания. По характеристикам Ф. м. близка к частотной модуляции . Если модулирующий сигнал синусоидальный, то спектр и форма сигналов в случае частотной модуляции и Ф. м. полностью совпадают. Различия обнаруживаются при более сложных формах модулирующего сигнала.
(обратно)Фазовая рельефография
Фа'зовая рельефогра'фия, способ записи и воспроизведения оптической информации. Носителями информации в Ф. р. служат прозрачные (за редкими исключениями) масляные, термопластические (см. Термопластическая запись ) или гелеобразные (см. Гели ) тонкие слои. Такой «запоминающий» слой входит в состав т. н. многослойной (обычно двух-или трёхслойной) структуры. В двухслойной структуре запоминающий слой представляет собой дисперсную систему из фотополупроводникового материала (см. Фотопроводимость ) в полимерном связующем и наносится на тонкий слой электропроводящего материала. В трёхслойной структуре диэлектрический запоминающий слой наносится на слой фотополупроводника, в свою очередь граничащего с проводящим слоем. Все эти слои чаще всего прозрачны (запись и воспроизведение «на просвет»), хотя существуют и структуры, в которых свет отражается либо от зеркального проводника-подложки, либо от непрозрачной поверхности запоминающего фотополупроводникового слоя. Перед записью структуру «очувствляют», равномерно заряжая запоминающую поверхность и заземляя проводник-подложку. Образуется своеобразный конденсатор, в котором заряженная запоминающая поверхность служит одной из обкладок. Воздействие светового сигнала приводит в двухслойной структуре к стеканию части поверхностного заряда на подложку (тем более полному, чем сильнее освещен данный микроучасток поверхности); в трёхслойной структуре, напротив, заряд противоположного знака проникает с подложки на граничащую с запоминающим слоем поверхность фотополупроводника. В обоих типах структур электростатические силы притяжения разноимённых зарядов деформируют поверхность мягкого запоминающего слоя (часто после его нагревания – т. н. теплового проявления), образуя рельеф, распределение глубины которого соответствует распределению потока излучения по этой поверхности (т. е. в получаемом рельефе кодируется оптическая информация). При считывании записанной информации различия толщины рельефа вызывают различные изменения фазы считывающей световой волны. Эти различия не воспринимаются ни глазом, ни др. приёмниками оптического излучения. Поэтому их преобразуют в изменения амплитуды световой волны (т. е. интенсивности считывающего пучка), которые регистрируются приёмниками излучения, в том числе человеческим глазом. Такое преобразование осуществляют в настоящее время (70-е гг. 20 в.) главным образом шлирен-методом , но в принципе это можно делать также аналогично методу фазового контраста в микроскопии [см. Микроскоп , раздел Методы освещения и наблюдения (микроскопия)]. Структуры, применяемые в Ф. р., могут использоваться многократно – ненужную более запись можно «стереть» тепловой обработкой. Главное достоинство Ф. р. – возможность считывания информации спустя очень малые промежутки времени после записи, что позволяет применять Ф. р. для практически мгновенной передачи и преобразования изображений (например, в телевидении – с подачей их на экраны индивидуального или коллективного пользования площадью до нескольких м 2 ). Высокая разрешающая способность и быстродействие, характеризующие метод Ф. р., делают его перспективным для голографии , для использования в электронных вычислительных машинах (в оперативной памяти, при вводе и выводе информации), для различных видов оптической обработки изображений. См. также фотография , раздел Несеребряная фотография и научно-технические применения фотографии.