Выбрать главу

  Лит.: Вилесов Ф. И., Курбатов Б. Л., Теренин А. Н., «Докл. АН СССР», 1961, т. 138, с. 1329–32; Электронная спектроскопия, пер. с англ., М., 1971.

  М. А. Ельяшевич.

(обратно)

Фотоэлектронная эмиссия

Фотоэлектро'нная эми'ссия, внешний фотоэффект, испускание электронов твёрдыми телами и жидкостями под действием электромагнитного излучения (фотонов) в вакуум или др. среды. Практическое значение в большинстве случаев имеет Ф. э. из твёрдых тел (металлов, полупроводников, диэлектриков) в вакуум. Основные закономерности Ф. э. состоят в следующем: 1) количество испускаемых электронов пропорционально интенсивности излучения; 2) для каждого вещества при определенном состоянии его поверхности и температуре Т ® 0 К существует порог – минимальная частота w0 (или максимальная длина волны l0 ) излучения, за которой Ф. э. не возникает; 3) максимальная кинетическая энергия фотоэлектронов линейно возрастает с частотой излучения и не зависит от его интенсивности.

  Ф. э. – результат 3 последовательных процессов: поглощения фотона и появления электрона с высокой (по сравнению со средней) энергией; движения этого электрона к поверхности, при котором часть энергии может рассеяться; выхода электрона в др. среду через поверхность раздела. Количественной характеристикой Ф. э. является квантовый выход Y – число вылетевших электронов, приходящееся на 1 фотон излучения, падающего на поверхность тела. Величина Y зависит от свойств тела, состояния его поверхности и энергии фотонов.

  Ф. э. из металлов возникает, если энергия фотона ( – Планка постоянная , w – частота излучения) превышает работу выхода металла е j. Последняя для чистых поверхностей металлов > 2 эв (а для большинства из них > 3 эв ), поэтому Ф. э. из металлов (если работа выхода не снижена специальным покрытием поверхности) может наблюдаться в видимой и ультрафиолетовой (для щелочных металлов и бария) или только в ультрафиолетовой (для всех др. металлов) областях спектра. Вблизи порога Ф. э. для большинства металлов Y ~ 10-4 электрон/фотон. Малая величина Y обусловлена тем, что поверхности металлов сильно отражают видимое и ближнее ультрафиолетовое излучение (коэффициент отражения R > 90%), так что в металл проникает лишь малая доля падающего на него излучения. Кроме того, фотоэлектроны при движении к поверхности сильно взаимодействуют с электронами проводимости, которых в металле много (~ 1022 см -3 ), и быстро рассеивают энергию, полученную от излучения. Энергию, достаточную для совершения работы выхода, сохраняют только те фотоэлектроны, которые образовались вблизи поверхности на глубине, не превышающей несколько нм (рис. , а). Менее «энергичные» фотоэлектроны могут пройти без потерь энергии в десятки раз больший путь в металле, но их энергия недостаточна для преодоления поверхностного потенциального барьера и выхода в вакуум.

  С увеличением энергии фотонов Y металлов возрастает сначала медленно. При   = 12 эв Y чистых металлических плёнок (полученных испарением металла в высоком вакууме) составляет для Al 0,04, для Bi – 0,015 электрон/фотон. При  > 15 эв R резко падает (до 5%), a Y увеличивается и у некоторых металлов (Pt, W, Sn, Ta, In, Be, Bi) достигает 0,1–0,2 электрон/фотон. Случайные загрязнения могут сильно снизить j, вследствие чего порог Ф. э. сдвигается в сторону более длинных волн, и Y в этой области может сильно возрасти. Резкого увеличения Y и сдвига порога Ф. э. металлов в видимую область спектра достигают, покрывая чистую поверхность металла моноатомным слоем электроположительных (см. Ионизация ) атомов или молекул (Cs, Rb, Cs2 O), образующих на поверхности дипольный электрический слой. Например, слой Cs снижает (и соответственно сдвигает порог Ф. э.: для W – от 5,05 до 1,7 эв , для Ag – от 4,62 до 1,65 эв, для Cu – от 4,52 до 1,55 эв, для Ni – от 4,74 до 1,42 эв .

  Ф. э. из полупроводников и диэлектриков. В полупроводниках и диэлектриках сильное поглощение электромагнитного излучения начинается от энергий фотонов