Выбрать главу

  Ядерным Ф. называется поглощение g-кванта атомным ядром, сопровождающееся его перестройкой (см. Фотоядерные реакции ).

  Ф. широко используется в исследованиях строения вещества – атомов, атомных ядер, твёрдых тел (см. Фотоэлектрические явления ), а также в фотоэлектронных приборах.

  Лит.: Hertz Н., Uber einen Einfluss des ultravioletten Lichtes auf die electrische Entladung, «Annalen der Physik und Chemie», 1887, Bd 31; Столетов А. Г., Избр. соч., М. – Л., 1950; Эйнштейн А., Собр. научн. тр., т. 3, М., 1966; Tamm Ig., Scliubin S., Zur Theorie des Photoeffektes an Metalien, «Zeitschrift fur Physik», 1931, Bd 68; Лукирский П. И., О фотоэффекте, Л. – М., 1933; Стародубцев С. В., Романов А. М., Взаимодействие гамма-излучения с веществом, ч. 1, Таш., 1964.

  Т. М. Лифшиц.

(обратно)

Фотоэффект внешний

Фотоэффе'кт вне'шний, то же, что фотоэлектронная эмиссия .

(обратно)

Фотоэффект внутренний

Фотоэффе'кт вну'тренний, перераспределение электронов по энергетическим состояниям в конденсированной среде, происходящее при поглощении электромагнитного излучения. В неметаллических телах (полупроводниках и диэлектриках ) Ф. в. проявляется в изменении электропроводности (см. Фотопроводимость ), диэлектрической проницаемости среды (см. Фотодиэлектрический эффект ) или в возникновении на ее границах электродвижущей силы (см. Фотоэдс ). В металлах из-за их высокой электропроводности Ф. в. неощутим. Ф. в. используется для изучения электрических свойств веществ и неравновесных электронных процессов в них. Исследование Ф. в. позволяет определять ширину запрещенной зоны веществ, времена жизни электронов проводимости и дырок, механизмы и параметры процессов рекомбинации неравновесных носителей заряда, свойства примесей и др. Ф. в. используется в фотоэлектронных приборах (см. Фоторезистор , Фотоэлемент , Фотодиод , Фототранзистор ) и в устройствах для преобразования солнечной энергии в электрическую (см. Солнечная батарея ).

  Лит.: Рывкин с. М., Фотоэлектрические явления в полупроводниках, М., 1963; Бьюб Р., Фотопроводимость твердых тел, пер. с англ., М., 1962; Фотопроводимость. Сб. ст., пер. с англ., М., 1967.

  Т. М. Лифшиц.

(обратно)

Фотоядерные реакции

Фотоя'дерные реа'кции, ядерный фотоэффект, поглощение атомными ядрами g-квантов с испусканием протонов р, нейтронов n или более сложных частиц. Наиболее изучены Ф. р. (g, р) и (g, n), известны также реакции (g, d), (g, pn), (g, d) и др. Для вырывания из атомного ядра протона или нейтрона (нуклонов) энергия g-кванта Eg должна превышать энергию связи нуклона в ядре. Сумма эффективных поперечных сечений всевозможных Ф. р. называется сечением поглощения g-кванта ядром. Для всех ядер (за исключением очень лёгких) сечение sg при малых и больших энергиях g-кванта мало, а в середине имеется высокий широкий максимум, называемый гигантским резонансом (рис. 1 ).

  Положение гигантского резонанса монотонно уменьшается с ростом массового числа А ядер от 20–25 Мэв в лёгких ядрах до 13 Мэв в тяжёлых. Зависимость энергии Еm , соответствующей вершине резонанса, от А описывается формулой: Еm = 34 А -1/6 . Ширина резонанса Г ~ 4–8 Мэв; она минимальна у магических ядер – Г (208 Pb) = 3,9 Мэв, и максимальна у деформированных ядер – Г (165 Но) = 7 Мэв. В области гигантского резонанса кривая поглощения не является монотонной, а имеет определённую структуру. У деформированных ядер это двугорбая кривая (рис. 2 , а). У лёгких и средних ядер и у некоторых тяжёлых ядер наблюдается несколько максимумов шириной в сотни кэв (рис. 2 , б). Распределение фотонейтронов по энергии в области резонанса близко к максвелловскому (см. Максвелла распределение ). Вместе с тем есть отклонения: большим оказывается число нейтронов в высокоэнергетической области спектра. Распределение фотопротонов в большинстве случаев не является максвелловским.

  Гигантский резонанс связывают с возбуждением g-квантами собственных колебаний протонов относительно нейтронов (дипольные колебания). Нуклоны могут покидать ядро непосредственно в процессе дипольных колебаний, но могут испускаться и после их затухания. Упорядоченные колебания нуклонов постепенно переходят в весьма сложное «тепловое» движение. В результате образуется возбуждённое составное ядро , из которого «испаряются» протоны или нейтроны. Ширина Г гигантского резонанса определяется «временем жизни» дипольных колебаний. При энергии g-квантов, превышающей энергию гигантского резонанса, поглощающие g-квант нуклоны, как правило, быстро покидают ядро, дипольные колебания не возникают (ядро не успевает «раскачаться») и механизм Ф. р. является «прямым» (см. Прямые ядерные реакции ; например, при E g ~ 70 Мэв механизм поглощения g-квантов становится двухнуклонным). Наряду с дипольными колебаниями в ядре могут возбуждаться квадрупольные, октупольные и др. типы колебаний, но их роль в Ф. р. не существенна. Иногда Ф. р. называются процессы, в которых g-кванты высокой энергии (~ 1,5×10-8 эв ), поглощаясь ядрами или отдельными нуклонами, вызывают рождение пи-мезонов (например, g + p ® n + p- ; g + р ® р + p0 ) и др. элементарных частиц.