Выбрать главу

  В СССР первые исследования по Ф. а. появились в 30-х гг.: работы

А. Н. Колмогорова (1934) по теории линейных топологических пространств;

Н. Н. Боголюбова (1936) по инвариантным мерам в динамических системах;

Л. В. Канторовича (1937) и его учеников по теории полуупорядоченных пространств, применениям Ф. а. к вычислительной математике и др.; М. Г. Крейна и его учеников (1938) по углублённому изучению геометрии банаховых пространств, выпуклых множеств и конусов в них, теории операторов и связей с различными проблемами классического математического анализа и др.; И. М. Гельфанда и его учеников (1940) по теории нормированных колец (банаховых алгебр) и др.

  Для современного этапа развития Ф. а. характерно усиление связей с теоретической физикой, а также с различными разделами классического анализа и алгебры, например теорией функций многих комплексных переменных, теорией дифференциальных уравнений с частными производными и т.п.

  2. Понятие пространства. Наиболее общими пространствами, фигурирующими в Ф. а., являются линейные (векторные) топологические пространства, т. е. линейные пространства Х над полем комплексных чисел  (или действительных чисел ), которые одновременно и топологические, причём линейные операции непрерывны в рассматриваемой топологии. Более частная, но очень важная ситуация возникает, когда в линейном пространстве Х можно ввести норму (длину) векторов, свойства которой являются обобщением свойств длины векторов в обычном евклидовом пространстве. Именно, нормой элемента x Î Х называется действительное число ||x || такое, что всегда ||x || ³ 0 и ||x || = 0 тогда и только тогда, когда x = 0;

||lx || = |l| ||x ||, l Î  x , если ||xn — x ||  0.

  В большом числе задач возникает ещё более частная ситуация, когда в линейном пространстве Х можно ввести скалярное произведение — обобщение обычного скалярного произведения в евклидовом пространстве. Именно, скалярным произведением элементов x , у Î Х называется комплексное число (x , у ) такое, что всегда (x , x ) ³ 0 и (x , x ) = 0 тогда и только тогда, когда x = 0;

 , l, m Î  является нормой элемента x . Такое пространство называется предгильбертовым. Для конструкций Ф. а. важно, чтобы рассматриваемые пространства были полными (т. е. из того, что  для xm , xn Î X, следует существование предела , также являющегося элементом Х ). Полное линейное нормированное и полное предгильбертово пространства называются, соответственно, банаховым и гильбертовым. При этом известная процедура пополнения метрического пространства (аналогичная переходу от рациональных чисел к действительным) в случае линейного нормированного (предгильбертова) пространства приводит к банахову (гильбертову) пространству.

  Обычное евклидово пространство является одним из простейших примеров (действительного) гильбертова пространства . Однако в Ф. а. играют основную роль бесконечномерные пространства, т. е. такие, в которых существует бесконечное число линейно независимых векторов. Вот примеры таких пространств, элементами которых являются классы комплекснозначных (т. е. со значениями в , норма ||x || = ; банахово пространство Lp (T ) всех суммируемых с р -й (p ³ 1) степенью функций на Т , норма ; банахово пространство lp всех последовательностей таких, что , здесь   (множеству целых чисел), норма ||x || =(å|xj |p )1/ p ; в случае p = 2 пространства l2 и L2 (T ) гильбертовы, при этом, например, в L2 (T ) скалярное произведение ; линейное топологическое пространство D (), состоящее из бесконечно дифференцируемых функций на , каждая из которых финитна [т. е. равна нулю вне некоторого интервала (а , b )]; при этом xn  x, если xn (t ) равномерно финитны [т. е. (а , b ) не зависит от n ] и сходятся равномерно со всеми своими производными к соответствующим производным x (t ).

  Все эти пространства бесконечномерны, проще всего это видно для l2 : векторы ej = {0,..., 0, 1, 0,...} линейно независимы.