Выбрать главу

  Развитие математики в 19 и 20 вв. привело к необходимости дальнейшего обобщения понятия Ф., заключавшегося в перенесении этого понятия с переменных действительных чисел сначала на переменные комплексные числа, а затем и на переменные математические объекты любой природы. Например, если каждому кругу x плоскости соотнести его площадь у , то у будет функцией x , хотя x уже не число, а геометрическая фигура. Точно так же, если каждому шару x трёхмерного пространства соотнести его центр у , то здесь уже ни x , ни y не будут числами.

  Общее определение однозначной Ф. можно сформулировать так: пусть А = {x } и В = {у } — два непустых множества, составленных из элементов любой природы, и М — множество упорядоченных пар (x , у ) (где x Î А , у Î В ) такое, что каждый элемент x Î А входит в одну и только одну пару из М ; тогда М задаёт на А функцию y = f (x ), значение которой для каждого отдельного x0 Î А есть элемент y0 Î В , входящий в единственную пару из М , имеющую x0 своим первым элементом.

  При указанном расширении понятия Ф. стирается различие между Ф. одного и нескольких аргументов. Например, всякую Ф. трёх числовых переменных x , у , z можно считать Ф. одного аргумента — точки (x , у , z ) трёхмерного пространства. Более того, такие обобщения понятия Ф., как функционал или оператор (см. Функциональный анализ ), также охватываются приведённым определением.

  Как и остальные понятия математики, понятие Ф. сложилось не сразу, а прошло долгий путь развития. В работе П. Ферма «Введение и изучение плоских и телесных мест» говорится: «Всякий раз, когда в заключительном уравнении имеются две неизвестных величины, налицо имеется место». По существу здесь идёт речь о функциональной зависимости и её графическом изображении («место» у Ферма означает линию). Изучение линий по их уравнениям в «Геометрии» Р. Декарта (1637) также указывает на ясное представление о взаимной зависимости двух переменных величин. У И. Барроу («Лекции по геометрии», 1670) в геометрической форме устанавливается взаимная обратность действий дифференцирования и интегрирования (разумеется, без употребления самих этих терминов). Это свидетельствует уже о совершенно отчётливом владении понятием Ф. В геометрическом и механическом виде это понятие мы находим и у И. Ньютона , Однако термин «Ф.» впервые появляется лишь в 1692 у Г. Лейбница и притом не совсем в современном понимании его. Лейбниц называет Ф. различные отрезки, связанные с какой-либо кривой (например, абсциссы её точек и т. п.). В первом печатном курсе «Анализа бесконечно малых» Г. Лопиталя (1696) термин «Ф.» не употреблялся.

  Первое определение Ф. в смысле, близком к современному, встречается у И. Бернулли (1718): «Функция это величина, составленная из переменной и постоянной». В основе этого не вполне отчётливого определения лежит идея задания Ф. аналитической формулой. Та же идея выступает и в определении Л. Эйлера (см. «Введение в анализ бесконечных», 1748): «Функция переменного количества есть аналитическое выражение, составленное каким-либо образом из этого переменного количества и чисел или постоянных количеств». Впрочем, уже Эйлеру было не чуждо и современное понимание Ф., которое не связывает понятие Ф. с каким-либо аналитическим её выражением. В его «Дифференциальном исчислении» (1755) говорится: «Когда некоторые количества зависят от других таким образом, что при изменении последних и сами они подвергаются изменению, то первые называются функциями вторых». Всё же в 18 в. отсутствовало достаточно ясное понимание различия между Ф. и её аналитическим выражением. Это нашло отражение в той критике, которой Эйлер подверг решение задачи о колебании струны, предложенное Д. Бернулли (1753). В основе решения Бернулли лежало утверждение о возможности разложить любую Ф. в тригонометрический ряд. Возражая против этого, Эйлер указал на то, что подобная разложимость доставляла бы для любой Ф. аналитическое выражение, в то время как Ф. может и не иметь его (она может быть задана графиком, «начертанным свободным движением руки»). Эта критика убедительна и с современной точки зрения, ибо не все Ф. допускают аналитическое изображение (правда, у Бернулли речь идёт о непрерывной Ф., которая всегда аналитически изобразима, но она может и не разлагаться в тригонометрический ряд). Однако другие аргументы Эйлера уже ошибочны. Например, Эйлер считал, что разложение Ф. в тригонометрический ряд доставляет для неё единое аналитическое выражение, в то время как она может быть «смешанной» Ф., представимой на разных отрезках разными формулами. На самом деле одно другому не противоречит, но в ту эпоху казалось невозможным, чтобы два аналитических выражения, совпадая на части отрезка, не совпадали на всём его протяжении.