Лит.: Дейч А., Абрар Хидоятов, М. — Л., 1948; Авдеева Л. А., Абрар Хидоятов, Таш., 1960; Фельдман Я., Слово о выдающемся актере, «Театр», 1960, № 2.
Я. С. Фельдман.
А. Хидоятов.
(обратно)Хидэёси Тоётоми
Хидэёси Тоётоми, см. Тоётоми Хидэёси.
(обратно)Хижане
Хижа'не, западно-славянское племя, обитавшее в 8—12 вв. на южное побережье Балтийского моря, к В. от г. Росток. Х. входили в племенной союз лютичей .
(обратно)Хийумаа
Хи'йумаа, Хиума, Даго, остров в Моонзундском архипелаге Балтийского моря, в Эстонской ССР. Площадь около 965 км2 . Высота до 54 м . Сложен главным образом известняками и морскими отложениями антропогена. Почвы щебнистые и песчаные. Сосновые леса, по берегам заросли тростника. Рыболовство и рыбопереработка, земледелие, скотоводство. На Х. — г. Кярдла.
(обратно)Хикаят
Хика'ят, хикайят (араб. — повествование), литературный термин у народов Ближнего, Среднего Востока и Юго-Восточной Азии. В широком смысле Х. — любое крупное сюжетное прозаическое (реже поэтическое) произведение; в узком значении — жанр безавторского книжного прозаического эпоса (например, «Повесть о ханге Туахе», 17 в., в классической малайской литературе). В арабской, персидской и турецкой литературах термин «Х.» употребляется в значении «рассказ». В турецкой литературе обозначает также анонимный народный рассказ.
(обратно)«Хи-квадрат» распределение
«Хи-квадра'т» распределе'ние с f степенями свободы, распределение вероятностей суммы квадратов
c2 = X1 2 +...+Xf 2 ,
независимых случайных величин X1 ,..., Xf , подчиняющихся нормальному распределению с нулевым математическим ожиданием и единичной дисперсией. Функция «Х.-к.» р. выражается интегралом
Первые три момента (математическое ожидание дисперсия и третий центральный момент) суммы c2 равны соответственно f , 2f , 8f . Сумма двух независимых случайных величин c1 2 и c2 2 , с f1 и f2 степенями свободы подчиняется «Х.-к.» р. с f1 + f2 степенями свободы.
Примерами «Х.-к.» р. могут служить распределения квадратов случайных величин, подчиняющихся Рэлея распределению и Максвелла распределению . В терминах «Х.-к.» р. с чётным числом степеней свободы выражается Пуассона распределение :
Если количество слагаемых f
суммы c2
неограниченно увеличивается, то согласно центральной предельной теореме
распределение нормированного отношения
где
Следствием этого факта является другое предельное соотношение, удобное для вычисления Ff (x ) при больших значениях f :
В математической статистике «Х.-к.» р. используется для построения интервальных оценок и статистических критериев. Если Y1 ,..., Yn — случайные величины, представляющие собой результаты независимых измерений неизвестной постоянной а , причём ошибки измерений Yi — а независимы, распределены одинаково нормально и
Е (Yi — a ) = 0, Е (Yi — а )2 = s2 ,
то статистическая оценка неизвестной дисперсии s2 выражается формулой
где
Отношение S2 / s2 подчиняется «Х.-к.» р. с f = n — 1 степенями свободы. Пусть x1 и x2 — положительные числа, являющиеся решениями уравнений Ff (x1 ) = a/2 и Ff (x2 ) = 1 — a/2 [a — заданное число из интервала (0, 1 /2 )]. В таком случае
Р {х1 < S2 / s2 < x2 ) = Р {S2 /x2 < s2 < S2 /x1 } = 1—a.
Интервал (S2 /x1 , S2 /x2 ) называют доверительным интервалом для s2 , соответствующим коэффициенту доверия 1 — a. Такой способ построения интервальной оценки для s2 часто применяется с целью проверки гипотезы, согласно которой s2 = s0 2 (s0 2 — заданное число): если s0 2 принадлежит указанному доверительному интервалу, то делается заключение, что результаты измерений не противоречат гипотезе s2 = s0 2 . Если же