Выбрать главу

Линии тока

Ли'нии то'ка,

  1) векторного поля р, линии, в каждой точке которых касательная имеет направление вектора поля в этой точке (см. Векторное поле). Дифференциальные уравнения Л. т. имеют вид:

  dx/p1 = dy/p2 = dz/p3,

  где p1, p2, p3 — координаты вектора поля, а х, у, z — координаты точки Л. т.

  2) В гидроаэромеханике, линия, в каждой точке которой касательная к ней совпадает по направлению со скоростью частицы жидкости в данный момент времени. Совокупность Л. т. позволяет наглядно представить в каждый данный момент времени поток жидкости, давая как бы моментальный фотографический снимок течения. Они могут быть сделаны видимыми с помощью взвешенных частиц, внесённых в поток (например, алюминиевый порошок в воде, дым в воздухе). При фотографировании такого потока с короткой выдержкой получается изображение Л. т. (см. рис.).

Илл. к ст. Линии тока.

Линий движения способ

Ли'ний движе'ния спо'соб, один из картографических способов изображения. Л. д. с. применяется для изображения пути перемещения объектов и явлений (например, морских течений, перелётов птиц, маршрутов путешествий, перевозок грузов и т. п.), а также для указания политико-экономических связей, зависимостей и воздействий (например, направлений экспорта и импорта товаров, планов военных операций и др.).

Линименты

Линиме'нты (лат., ед. ч. linimentum, от linio — мажу, натираю), одна из лекарственных форм; жидкие лечебные мази, плавящиеся при температуре тела. Втирают в кожу или наносят на пораженные места.

Линицкая Любовь Павловна

Лини'цкая (по мужу — Загорская) Любовь Павловна (27.12.1866, слобода Преображенская, ныне Васильковского района Днепропетровской области, — 5.2.1924, Киев), украинская советская актриса. Сценическую деятельность начала в 1886. Работала в труппах Н. К. Садовского, в товариществе под руководством И. А. Марьяненко и др. Игра Л. отличалась героическим пафосом и одновременно психологичской глубиной. Роли: Маруся Богуславка, Свиридиха, («Маруся Богуславка», «Оборона Буши» Старицкого), Татьяна, Варька («Бондаривна», «Бесталанная» Карпенко-Карого), Наталья («Лымеривна» Мирного) и др. Разоблачительной остротой отмечены комедийные роли — Проня Прокоповна («За двумя зайцами» Старицкого) и др.

  Лит.: Любов Павлiвна Лiницька. Нариси, Київ, 1957.

Линия апсид

Ли'ния апси'д в астрономии, отрезок прямой, соединяющий апсиды, т. е. две точки эллиптической орбиты небесного тела: наиболее близкую к центральному телу и наиболее удалённую от него. Эти точки лежат на концах большой оси эллипса, которая, следовательно, и есть Л. а. В орбитах планет Солнечной системы Л. а. ограничены перигелием и афелием, в орбитах Луны и искусственных спутников Земли — перигеем и апогеем, в орбитах двойных звёзд — пернастром и апоастром.

Линия (в генетике)

Ли'ния в генетике, размножающиеся половым путём родственные организмы, которые происходят, как правило, от одного предка или одной пары общих предков и воспроизводят в ряду поколений одни и те же наследственно устойчивые признаки. Характерные для Л. признаки искусственно поддерживаются путём отбора и близкородственного скрещивания. Различают чистые линии — генотипически однородное потомство самоопыляющихся растений, у которых почти все гены находятся в гомозиготном состоянии, и инбредные Л. — потомство перекрёстноопыляющегося растения, полученное путем принудительного самоопыления, или группа животных, полученная при близкородственном разведении (см. Инбридинг). Чем теснее родство родителей, тем выше степень гомозиготности потомства. И в чистых, и в инбредных Л. постоянно возникающие мутации нарушают гомозиготность. Поэтому для сохранения гомозиготности по генам, определяющим основные свойства Л., необходимо вести отбор. В животноводстве различают генеалогическую Л., т. е. группу животных, происходящую от общего предка, и заводскую Л. — однородную, качественно своеобразную, поддерживаемую отбором и подбором с использованием инбридинга группу высокопродуктивных животных, происходящую от выдающегося родоначальника и схожую с ним по конституции и продуктивности (см. Разведение по линиям). Чистые и инбредные Л. служат основой для получения высокопродуктивных гибридов в растениеводстве и животноводстве. В медико-биологических исследованиях важную роль играют Л. лабораторных животных, сохраняющие константность по определённым признакам.

  Лит.: Иогансен В. Л., О наследовании в популяциях и чистых линиях, пер. с нем., М. — Л., 1935; Медведев Н. Н., Практическая генетика, М., 1966.

  Ю. С. Демин, Е. Я. Борисенко.

Линия (геометрич. понятие)

Ли'ния (от лат. linea), геометрическое понятие, точное и в то же время достаточно общее определение которого представляет значительные трудности и осуществляется в различных разделах геометрии различно.

  1) В элементарной геометрии рассматриваются прямые Л., отрезки прямых, ломаные Л., составленные из отрезков, и некоторые кривые Л. Каждый вид кривых Л. определяется тем или иным специальным способом (например, окружность определяется как геометрическое место точек, имеющих заданное расстояние R от заданной точки О — центра окружности). Иногда в учебниках дают определение Л. как границы куска поверхности (поверхность определяется при этом как граница тела) или как траектории движущейся точки. Но в рамках элементарной геометрии эти определения не получают отчётливой формулировки.

  2) Представление о Л. как траектории движущейся точки может быть сделано вполне строгим при помощи идеи параметрического представления Л. Например, вводя на плоскости прямоугольные координаты (x, у), можно параметрически задать окружность радиуса R с центром в начале координат уравнениями

  x = R cos t, y = R sin t.

  Когда параметр t пробегает отрезок 0 £ t £ 2p, точка (х, у) описывает окружность. Вообще, Л. на плоскости задают параметрическими уравнениями вида

  x = j (t), у = (t),

  где j (t), (t) — произвольные функции, непрерывные на каком-нибудь конечном или бесконечном интервале D числовой оси t. С каждым значением параметра t (из интервала D) уравнения (*) сопоставляют некоторую точку M, координаты которой определяются этими уравнениями. Л., заданная параметрическими уравнениями (*) есть множество точек, соответствующих всевозможным значениям t из D, при условии, что эти точки рассматриваются в определенном порядке, именно: если точка M1 соответствует значению параметра t1, а точка M2 — значению t2, то M1 считается предшествующей M2, если t1 < t2 При этом точки, отвечающие различным значениям параметра, всегда считаются различными.