Выбрать главу

  Избегая и чрезмерной общности, и чрезмерного сужения понятия Л., в современной топологии пользуются понятием Л., введённым в 1921 П. С. Урысоном, который определяет Л. (кривую) как произвольный континуум размерности единица. Континуум имеет размерность единица, если при любом e > 0 он может быть представлен в виде суммы конечного числа замкнутых множеств диаметра, меньшего e, обладающих тем свойством, что никакие три из этих замкнутых множеств не имеют общей точки (см. также Размерность в геометрии). Континуум, лежащий на плоскости, будет Л. в смысле Урысона тогда и только тогда, когда он не содержит внутренних точек. Этим свойством характеризовал ранее (70-е гг. 19 в.) Л., лежащие на плоскости, Г. Кантор. Хотя определение Кантора применимо только к Л., лежащим на плоскости, иногда и общие Л. в смысле Урысона называют «канторовыми кривыми».

  Л. Н. Колмогоров.

  6) Ещё математики древности изучали линии второго порядка(эллипс, гиперболу и параболу). Ими же был рассмотрен ряд отдельных замечательных алгебраических Л. более высокого порядка, а также некоторые трансцендентные (неалгебраические) Л. Систематическое изучение Л. и их классификация стали возможными с созданием аналитической геометрии (Р. Декарт).

  Из Л. третьего порядка наиболее известны:

  Декартов лист (см. рис. «Алгебраические кривые третьего порядка», № 1). уравнение в прямоугольных координатах: x3 + y3 — 3аху = 0. Впервые кривая определяется в письме Р. Декарта к П. Ферма в 1638. Полная форма кривой с наличием асимптоты, проходящей через точки ( —а, 0) и (0, —а), была определена позднее (1692) Х. Гюйгенсом и И. Бернулли. Название «декартов лист» установилось в начале 18 в.

  Локон Аньези (см. рис. «Алгебраические кривые третьего порядка», № 2). Пусть имеется круг с диаметром OC = -а и отрезок BDM, построенный так, что ОВ : BD = OC : ВМ; геометрическое место точек М представляет собой локон Аньези (или верзиеру). уравнение в прямоугольных координатах: у = a3/(a2 + x2). Исследование этой Л. связано с именем итальянской женщины-математика Марии Аньези (1748).

  Кубическая парабола (см. рис. «Алгебраические кривые третьего порядка», № 3). уравнение в прямоугольных координатах: у = x3.

  Полукубическая парабола (см. рис. «Алгебраические кривые третьего порядка», № 4), парабола Нейля. уравнение в прямоугольных координатах: у = -сх3/2. Названа по имени английского математика У. Нейля (1657), нашедшего длину её дуги.

  Строфоида (от греч. stróphos — кручёная лента и éidos — вид) (см. рис. «Алгебраические кривые третьего порядка», № 5). Пусть имеется неподвижная прямая АВ и точка С вне её на расстоянии CO = а; вокруг С вращается прямая, пересекающая АВ в переменной точке N. Если от точки N отложить по обе стороны прямой АВ отрезки NM = NM' = NO, то геометрическое место точек М и М' для всех положений вращающегося луча CN и есть строфоида. Уравнение в прямоугольных координатах: ; в полярных координатах: r = —a cos 2j/cosj. Впервые строфоиду исследовал Э. Торричелли(1645), название было введено в середине 19 в.

  Циссоида Диоклеса (см. рис. «Алгебраические кривые третьего порядка», № 6) (греч. kissoeides, от kissós — плющ и éidos — вид), геометрическое место точек М, для которых OM = PQ (Р — произвольная точка производящего круга с диаметром а). Уравнение в прямоугольных координатах: y2 = х3/(а — х); в полярных координатах: r = asin2 j/cos j. Древние греки рассматривали только ту часть циссоиды, которая находится внутри производящего круга. Вместе с дугой окружности эта часть образует фигуру, напоминающую лист плюща (откуда название); наличие бесконечных ветвей было установлено в 17 в. французским математиком Ж. П. Робервалем и независимо от него бельгийским математиком Р. Ф. Слюзом.

  Из Л. четвёртого и более высоких порядков наиболее известны:

  Кардиоида (от греч. kardía — сердце и éidos — вид) (см. рис. «Алгебраические кривые четвертого и более высоких порядков», № 1), кривая, описываемая какой-либо точкой М окружности радиуса а, катящейся без скольжения по неподвижной окружности того же радиуса. уравнение в прямоугольных координатах: (x2 + y2 — 2ах)2 = 4a(x2 + y2); в полярных координатах: r = 2а (1 + cos j).

  Конхоида Никомеда (от греч. konchoeides — похожий на раковину) (см. рис. «Алгебраические кривые четвертого и более высоких порядков», № 2), кривая, получающаяся при увеличении или уменьшении каждого радиус-вектора точек данной прямой на одну и ту же величину d, т. о., OM = OP — d или OM' = OP + d. Если расстояние от полюса О до данной прямой равно а, то уравнение в прямоугольных координатах: (х — а)2(х2 + y2) — d2x2 = 0, в полярных координатах: r = a/cosj ± d. Впервые рассматривалась древнегреческим геометром Никомедом (около 250—150 до нашей эры), который использовал её для решения задач о трисекции угла и удвоении куба.

  Лемниската Бернулли (см. рис. «Алгебраические кривые четвертого и более высоких порядков», № 3) (от лат. lemniscatus, буквально — украшенный лентами), кривая, имеющая форму восьмёрки; геометрическое место точек, произведение расстояний которых от фокусов F1 ( — а, 0) и F2 (а, 0) равно а2. уравнение в прямоугольных координатах: (x2 + y2)2 — 2a2(x2 — y2) =0, в полярных координатах: r2 = 2а2 cos 2j. Впервые рассматривалась Я. Бернулли(1694). Лемниската является частным случаем овалов Кассини и синус-спиралей.

  Овалы Декарта (см. рис. «Алгебраические кривые четвертого и более высоких порядков», № 4), геометрические места точек М, расстояния которых от двух фиксированных точек F1 и F2, называемых фокусами, умноженные на данные числа, имеют постоянную сумму с, то есть mMF1 + + nMF2 = с. уравнение в прямоугольных координатах:

  (x + y’’ —2rx)2 — l2(x2 + y2) — k = 0,

  где r, l и k — некоторые постоянные, связанные с параметрами m, n и d; в полярных координатах: