.
Рис. 1 к ст. Логарифмическая функция.
Рис. 2 к ст. Логарифмическая функция.
Логарифмические таблицы
Логарифми'ческие табли'цы, таблицы логарифмов чисел; применяются для упрощения вычислений. Наиболее распространены таблицы десятичных логарифмов. Т. к. десятичные логарифмы чисел N и 10kN (при k целом) различаются только характеристиками и имеют одинаковые мантиссы (lg10kN = k + lg N), то в таблицах десятичных логарифмов приводятся только мантиссы логарифмов целых чисел. Для отыскания характеристики служат правила: 1) характеристика числа, большего 1, на единицу меньше числа цифр в целой части этого числа (так, lg 20 000 = 4,30103) и 2) характеристика десятичной дроби, меньшей 1, равна взятому со знаком минус числу нулей, предшествующих первой в дроби цифре, отличной от нуля (так, lg 0,0002 = - 4,30103, т. о., десятичные логарифмы дробей записываются в виде суммы положительной мантиссы и отрицательной характеристики).
Существуют таблицы десятичных логарифмов с различным числом знаков мантисс. Наиболее распространены 4-значные и 5-значные таблицы. Иногда употребляют 7-значные таблицы, а в редких случаях — таблицы, позволяющие без большого труда вычислять логарифмы с большим числом знаков. В Л. т. часто приводятся таблицы антилогарифмов — чисел, логарифмы которых суть данные числа, и таблицы так называемых гауссовых логарифмов, служащих для определения логарифмов суммы или разности двух чисел по известным логарифмам этих чисел (без промежуточного нахождения самих чисел). Кроме логарифмов чисел, Л. т. содержат обычно логарифмы тригонометрических величин.
Первые Л. т. были составлены независимо друг от друга Дж. Непером и швейцарским математиком И. Бюрги. Таблицы Непера «Описание удивительной таблицы логарифмов» (1614) и «Устройство удивительной таблицы логарифмов» (1619) содержали 8-значные логарифмы синусов, косинусов и тангенсов для углов от 0° до 90°, следующих через одну минуту. Т. к. синус 90° тогда принимали равным 107, а на него часто приходилось умножать, то Непер определил свои Л. так, что логарифм 107 был равен нулю. Логарифмы остальных синусов, меньших 107, у него положительны. Непер не ввёл понятия об основании системы логарифмов. Его логарифм числа N в современных обозначениях приблизительно равен . Свойства логарифмов Непера несколько сложнее обычных, т. к. у него логарифм единицы отличен от нуля.
«Арифметические и геометрические таблицы прогрессий» (1620) Бюрги представляют собой первую таблицу антилогарифмов («чёрные числа») и дают значения чисел, соответствующих равноотстоящим логарифмам («красным числам»). «Красные числа» Бюрги суть логарифмы поделенных на 108 «чёрных чисел» при основании, равном . Таблицы Бюрги и особенно Непера немедленно привлекли внимание математиков к теории и вычислению логарифмов. По совету Непера английский математик Г. Бриге вычислил 8-значные десятичные логарифмы (1617) от 1 до 1000 и затем 14-значные (1624) от 1 до 20 000 и от 90 000 до 100 000 (по его имени десятичные логарифмы иногда называют бриговыми). 10-значные таблицы от 1 до 100 000 издал голландский математик А. Влакк (1628). Таблицы Влакка легли в основу большинства последующих таблиц, причём их авторы внесли много изменений в структуру Л. т. и поправок в выкладки (у самого Влакка было 173 ошибки, у австрийского математика Г. Вега в 1783 — пять; первые безошибочные таблицы выпустил в 1857 немецкий математик К. Бремикер). В России таблицы логарифмов впервые были изданы в 1703 при участии Л. Ф. Магницкого. Таблицы т. н. гауссовых логарифмов были опубликованы в 1802 итальянским математиком З. Леонелли; К. Ф.Гаусс ввёл (1812) эти логарифмы в общее употребление.
Лит.: Брадис В. М., Четырехзначные математические таблицы, М. — Л., 1928, посл., 44 изд., М., 1973; Милн-Томсон Л.-М., Комри Л.-Дж., Четырехзначные математические таблицы, пер. с англ., М., 1961; Пятизначные таблицы натуральных значений тригонометрических величин, их логарифмов и логарифмов чисел, 6 изд., М., 1972; Вега Г., Таблицы семизначных логарифмов, 4 изд., М., 1971; Субботин М. Ф., Многозначные таблицы логарифмов, М. — Л., 1940; Десятизначные таблицы логарифмов комплексных чисел..., М., 1952; Таблицы натуральных логарифмов, 2 изд., т. 1—2, М., 1971.
Логарифмический приёмник
Логарифми'ческий приёмник, транзисторный или ламповый радиоприёмник, в котором амплитудная характеристика усилителя промежуточной или видеочастоты представляется логарифмическим законом. Л. п. позволяет принимать сигналы с динамическим диапазоном до 100 дб и уменьшает действие электрических помех некоторых видов. Логарифмическая амплитудная характеристика может быть получена, например, посредством включения нелинейного элемента (диода) параллельно коллекторной или анодной нагрузке в каждом каскаде усилителя или последовательным сложением напряжений от каждого каскада усилителя на общей нагрузке. В первом случае при малых входных сигналах амплитудная характеристика усилителя линейна (так называемый линейно-логарифмический приёмник). С ростом входного сигнала диод начинает проводить электрический ток; его внутреннее сопротивление падает и шунтирует сопротивление нагрузки. Общее сопротивление нагрузки изменяется так, что амплитуда на выходе усилителя пропорциональна логарифму амплитуды на входе. Во втором случае при возрастании входного сигнала каскады усилителя, начиная с последнего, поочерёдно выходят из линейного режима и до перехода в режим насыщения (ограничения) обеспечивают получение логарифмической амплитудной характеристики.
Лит.: Волков В. М., Логарифмические усилители на транзисторах, К., 1965.
А. С. Афромеев.
Логарифмически-нормальное распределение
Логарифми'чески-норма'льное распределе'ние, специальный вид распределения вероятностей случайных величин. Если Х имеет нормальное распределение и Y = ех, то Y имеет Л.-н. р., характеризуемое плотностью:
.
Здесь m и s — параметры распределения величины X. Математическое ожидание Y:
,
дисперсия:
.
Этому распределению с хорошим приближением подчиняется, например, размер частиц при дроблении какого-либо материала (камня и т. п.), содержание многих минералов в породах.
Лит.: Колмогоров А. Н., О логарифмически-нормальном законе распределения размеров частиц при дроблении, «Докл. АН СССР», 1941, т. 31, в. 2, с. 99—101; Крамер Г., Математические методы статистики, пер. с англ., М., 1948; Aitchison J., Brown J. A. C., The lognormal distribution, Camb., 1957.
В. И. Битюцков.