В связи с этим сохранение намагниченности ферромагнетиками (Fe, Со, Ni) до температур Т ~ 1000 К может быть обусловлено только электрическим взаимодействием, так как при энергии eмагн ~ 10-16эрг тепловое движение разрушило бы ориентирующее действие магнитных сил уже при 1 К. На основе квантовой механики было показано, что наряду с кулоновским электростатическим взаимодействием заряженных частиц существует также чисто квантовое электростатическое обменное взаимодействие , зависящее от взаимной ориентации магнитных моментов электронов. Таким образом, эта часть электрического по своей природе взаимодействия оказывает существенное влияние на магнитное состояние электронных систем. В частности, это взаимодействие благоприятствует упорядоченной ориентации магнитных моментов атомных носителей М. Верхний предел энергии обменного взаимодействия eоб ~ 10-13эрг.
Значение eоб > 0 соответствует параллельной ориентации атомных магнитных моментов, то есть самопроизвольной (спонтанной) намагниченности тел (ферромагнетиков). При eоб < 0 имеет место тенденция к антипараллельной ориентации соседних магнитных моментов, характерной для атомной магнитной структуры антиферромагнетиков. Изложенное позволяет провести следующую физическую классификацию М. веществ.
I. Магнетизм слабовзаимодействующих частиц (eвз << mвН или eвз << кТ )
А. Преобладание диамагнетизма. К веществам с диамагнитными свойствами относятся: а) все инертные газы, а также газы, атомы или молекулы которых не имеют собственного результирующего магнитного момента. Их магнитная восприимчивость отрицательна и очень мала по абсолютной величине [молярная восприимчивость c ~ —(10-7 —10-5 )]; от температуры она практически не зависит; б) органические соединения с неполярной связью, в которых молекулы или радикалы либо не имеют магнитного момента, либо парамагнитный эффект в них подавлен диамагнитным; у этих соединений c ~ —10-6 и также практически не зависит от температуры, но обладает заметной анизотропией (см. Магнитная анизотропия ); в) вещества в конденсированных фазах — жидкой и кристаллической: некоторые металлы (Zn, Au, Hg и другие); растворы, сплавы и химические соединения (например, галоиды) с преобладанием диамагнетизма ионных остовов (ионы, подобные атомам инертных газов, — Li+ , Be2+ , A13+ , Cl- и т.п.). М. этой группы веществ похож на М. «классических» диамагнитных газов.
Б. Преобладание парамагнетизма характерно: а) для свободных атомов, ионов и молекул, обладающих результирующим магнитным моментом. Парамагнитны газы O2 , NO, пары щелочных и переходных металлов. Восприимчивость их c> 0 мала по величине (~ 10-3 —10-5 ) и при не очень низких температурах и не очень сильных магнитных полях (mвН/кТ << 1) не зависит от поля, но существенно зависит от температуры, для c имеет место Кюри закон c = С/Т, где С — постоянная Кюри; б) для ионов переходных элементов в жидких растворах, а также в кристаллах при условии, что магнитно-активные ионы слабо взаимодействуют друг с другом и их ближайшее окружение в конденсированной фазе слабо влияет на их парамагнетизм. При условии mв Н/кТ << 1 их восприимчивость не зависит от Н, но зависит от Т — имеет место Кюри — Вейса закон c = C’/(T — D), где C’ и D — константы вещества; в) для ферро- и антиферромагнитных веществ выше точки Кюри q.
II. Магнетизм электронов проводимости в металлах и полупроводниках
А. Парамагнетизм электронов проводимости в металлах (спиновый парамагнетизм) наблюдается у щелочных (Li, К, Na и другие), щёлочноземельных (Ca, Sr, Ba, Ra) и переходных металлов (Pd, Pt), а также у металлов Sc, Ti, V. Восприимчивость их мала (c ~ 10-5 ), не зависит от поля и слабо меняется с температурой. У ряда металлов (Cu, Ag, Au и других) этот парамагнетизм маскируется более сильным диамагнетизмом ионных остовов.
Б. Диамагнетизм электронов проводимости в металлах (Ландау диамагнетизм ) присущ всем металлам, но, как правило, его маскирует либо более сильный спиновый электронный парамагнетизм, либо диа- или парамагнетизм ионных остовов.
В. Пара- и диамагнетизм электронов проводимости в полупроводниках. По сравнению с металлами в полупроводниках мало электронов проводимости, но число их растет с повышением температуры; c в этом случае также зависит от Т.
Г. М. сверхпроводников обусловлен электрическими токами, текущими в тонком поверхностном слое толщиной ~10-5см. Эти токи экранируют толщу сверхпроводника от внешних магнитных полей, поэтому в массивном сверхпроводнике при Т< Tk магнитное поле равно нулю (Мейснера эффект ).
III. Магнетизм веществ с атомным магнитным порядком (eвз >> mвН или eвз >> кТ )
А. Ферромагнетизм имеет место в веществах с положительной обменной энергией (eоб > 0): кристаллах Fe, Со, Ni, ряде редкоземельных металлов (Gd, Tb, Dy, Но, Er, Tm, Yb), сплавах и соединениях с участием этих элементов, а также в сплавах Сг, Mn и в соединениях урана. Для ферромагнетизма характерна самопроизвольная намагниченность при температурах ниже точки Кюри q, при T > q ферромагнетики переходят либо в парамагнитное, либо в антиферромагнитное состояние (последний случай наблюдается, например, в некоторых редкоземельных металлах). Однако из опыта известно, что в отсутствии внешнего поля ферромагнитные тела не обладают результирующей намагниченностью (если исключить вторичное явление остаточной намагниченности). Это объясняется тем, что при Н = 0 ферромагнетик разбивается на большое число микроскопических областей самопроизвольного намагничивания (доменов ). Векторы намагниченности отдельных доменов ориентированы так, что суммарная намагниченность ферромагнетика равна нулю. Во внешнем поле доменная структура изменяется, ферромагнитный образец приобретает результирующую намагниченность (см. Намагничивание ).
Б. Антиферромагнетизм имеет место в веществах с отрицательной обменной энергией (eоб < 0): кристаллах Cr и Mn, ряде редкоземельных металлов (Ce, Рг, Nd, Sm, Eu), а также в многочисленных соединениях и сплавах с участием элементов переходных групп.
В магнитном отношении кристаллическая решётка этих веществ разбивается на так называемые магнитные подрешётки, векторы самопроизвольной намагниченности Jki которых либо антипараллельны (коллинеарная антиферромагнитная связь), либо направлены друг к другу под углами, отличными от 0° и 180° (неколлинеарная связь, см. Магнитная структура ). Если суммарный момент всех магнитных подрешёток в антиферромагнетике равен нулю, то имеет место скомпенсированный антиферромагнетизм; если же имеется отличная от нуля разностная самопроизвольная намагниченность, то наблюдается нескомпенсированный антиферромагнетизм, или ферримагнетизм , который реализуется главным образом в кристаллах окислов металлов с кристаллической решёткой типа шпинели , граната , перовскита и других минералов (их называют ферритами ). Эти тела (обычно полупроводники и изоляторы) по магнитным свойствам похожи на обычные ферромагнетики. При нарушении компенсации магнитных моментов в антиферромагнетиках из-за слабого взаимодействия между атомными носителями М. возникает очень малая самопроизвольная намагниченность веществ (~ 0,1% от обычных значений для ферро- и ферримагнетиков). Такие вещества называются слабыми ферромагнетиками (например, гематит a-Fe2 O3, карбонаты ряда металлов, ортоферриты и др.).