Новый этап в изучении М. начинается с работ М. Фарадея , который дал последовательную трактовку явлений М. на основе представлений о реальности электро-магнитного поля. Ряд важнейших открытий в области электромагнетизма (электромагнитная индукция — Фарадей, 1831; правило Ленца — Э. Х.Ленц , 1833, и др.), обобщение открытых электромагнитных явлений в трудах Дж. К. Максвелла (1872), систематическое изучение свойств ферромагнетиков и парамагнетиков (А. Г. Столетов , 1872; П. Кюри , 1895, и другие) заложили основы современной макроскопической теории М.
Микроскопический подход к изучению М. стал возможен после открытия электронно-ядерной структуры атомов. На основе классической электронной теории Х. А. Лоренца П. Ланжевен в 1905 построил теорию диамагнетизма (он создал также квазиклассическую теорию парамагнетизма). В 1892 Б. Л. Розинг и в 1907 П. Вейс высказали идею о существовании внутреннего молекулярного поля, обусловливающего свойства ферромагнетиков. Открытие электронного спина и его магнетизма (С. Гаудсмит , Дж. Ю. Уленбек , 1925), создание последовательной теории микроскопических явлений — квантовой механики — привело к развитию квантовой теории диа-, пара- и ферромагнетизма. На основе квантовомеханических представлений (пространственного квантования) Л. Бриллюэн в 1926 нашёл зависимость намагниченности парамагнетиков от внешнего магнитного поля и температуры. Ф. Хунд в 1927 провёл сравнение экспериментальных и теоретических значений эффективных магнитных моментов ионов в различных парамагнитных солях, что привело к выяснению влияния электрических полей парамагнитного кристалла на «замораживание» орбитальных моментов ионов — как было установлено, намагниченность кристалла определяется почти исключительно спиновыми моментами (В. Пенни и Р. Шлепп; Дж. Ван Флек, 1932). В 30-х годах была построена квантомеханическая теория магнитных свойств свободных электронов (парамагнетизм Паули, 1927; Ландау диамагнетизм , 1930). Существенное значение для дальнейшего развития теории парамагнетизма имело предсказанное Я. Г. Дорфманом (1923) и затем открытое Е. К. Завойским (1944) явление электронного парамагнитного резонанса (ЭПР).
Созданию квантовой теории ферромагнетизма предшествовали работы немецкого физика Э. Изинга (1925, двумерная модель ферромагнетиков), Дорфмана (1927, им была доказана немагнитная природа молекулярного поля), В. Гейзенберга (1926, квантовомеханический расчёт атома гелия), В. Гейтлера и Ф. Лондона (1927, расчёт молекулы водорода). В двух последних работах был использован открытый в квантовой механике эффект обменного (электростатического) взаимодействия электронов (П.Дирак , 1926) в оболочке атомов и молекул и установлена его связь с магнитными свойствами электронных систем, подчиняющихся Ферми — Дирака статистике (Паули принципу ). Квантовая теория ферромагнетизма была начата работами Я. И. Френкеля (1928, коллективизированная модель) и Гейзенберга (1928, модель локализованных спинов). Рассмотрение ферромагнетизма как квантового кооперативного явления (Ф. Блох , Дж. Слейтер , 1930) привело к открытию спиновых волн . В 1932—1933 Л. Неель и Л. Д. Ландау предсказали существование антиферромагнетизма. Изучение новых классов магнитных веществ — антиферромагнетиков и ферритов — позволило глубже понять природу М. Была выяснена роль магнитоупругой энергии в происхождении энергии магнитной анизотропии, построена теория доменной структуры и освоены методы её экспериментального изучения.
Развитию М. в значительной мере способствовало создание новых экспериментальных методов исследования веществ. Нейтронографические методы позволили определить типы атомных магнитных структур. Ферромагнитный резонанс, первоначально открытый и исследованный в работах В. К. Аркадьева (1913), а затем Дж. Гриффитса (1946), и антиферромагнитный резонанс (К. Гортер и другие, 1951) позволили начать экспериментальные исследования процессов релаксации магнитной, а также дали независимый метод определения эффективных полей анизотропии в ферро- и антиферромагнетиках.
Ядерный магнитный резонанс (Э. Пёрселл и др., 1945) и Мёссбауэра эффект (1958) значительно углубили наши знания о распределении спиновой плотности в веществе, особенно в металлических ферромагнетиках. Наблюдение рассеяния нейтронов и света позволили для ряда веществ определить спектры спиновых волн. Параллельно с этими экспериментальными работами развивались и различные аспекты теории М.: теория магнитной симметрии кристаллов, ферромагнетизм коллективизированных электронов, теория фазовых переходов II рода и критических явлений , а также модели одномерных и двумерных ферро- и антиферромагнетиков.
Развитие физики магнитных явлений привело к синтезированию новых перспективных магнитных материалов: ферритов для ВЧ и СВЧ-устройств, высококоэрцитивных соединений типа SmCo5 (см. Магнит постоянный ), прозрачных ферромагнетиков и др.
Лит.: Тамм И. Е., Основы теории электричества, 7 издание, М., 1957; Ландау Л. Д. и Лифшиц Е. М., Электродинамика сплошных сред, М., 1959; Вонсовский С. В., Магнетизм, М., 1971; Пайерлс Р. Е., Квантовая теория твердых тел, перевод с английского, М., 1956; Дорфман Я. Г., Магнитные свойства и строение вещества, М., 1955; Киттель Ч., Введение в физику твердого тела, перевод с английского, 2 издание, М., 1962; Вонсовский С. В., Шур Я. С., ферромагнетизм, М. — Л., 1948; Поливанов К. М., ферромагнетики, М. — Л., 1957; Бозорт Р., Ферромагнетизм, перевод с английского, М., 1956; Маттис Д., Теория магнетизма. Введение в изучение кооперативных явлений, перевод с английского, М., 1967; Туров Е. А., физические свойства магнитоупорядоченных кристаллов, М., 1963; Vleck J. Н. van, The theory of electric and magnetic susceptibilities, Oxf., 1932; Backer R., Doring W., Ferromagnetismus, B., 1939; Magnetism, ed. G. T. Rado and Н. Suhl, v. 1, v. 2, pt. A — B, v. 3, v. 4, N. Y., 1963—66; Goodenough J., Magnetism and the chemical bond, N. Y. — L., 1963.
С. В. Вонсовский.
Магнетик
Магне'тик, термин, применяемый ко всем веществам при рассмотрении их магнитных свойств. Разнообразие типов М. обусловлено различием магнитных свойств микрочастиц, образующих вещество, а также характера взаимодействия между ними. М. классифицируют по величине и знаку их магнитной восприимчивости c (вещества с c < 0 называются диамагнетиками , с c > 0 — парамагнетиками , с c >> 1 — ферромагнетиками ). Более глубокая физическая классификация М. основана на рассмотрении природы микрочастиц, обладающих магнитными моментами , их взаимодействия в веществе, а также влияния на М. внешних факторов (подробнее см. Магнетизм ).