Выбрать главу

  Современные сверхпроводящие материалы позволяют получать поля до 150—200 кгс. Стоимость крупных М. с. с напряжённостью поля порядка десятков кгс в объёме нескольких м3 практически не отличается от затрат на сооружение водоохлаждаемых соленоидов с такими же параметрами, в то время как суммарные затраты электрической энергии на питание М. с. и его охлаждение приблизительно в 500 раз меньше, чем для обычных электромагнитов. Для обеспечения работы такого М. с. требуется около 100—150 квт, тогда как для эксплуатации аналогичного водоохлаждаемого магнита потребовалась бы мощность ~40—60 Мвт.

  Значительное число созданных М. с. используется для исследования магнитных, электрических и оптических свойств веществ, в экспериментах по изучению плазмы, атомных ядер и элементарных частиц. М. с. получают распространение в технике связи и радиолокации, в качестве индукторов магнитного поля электромашин. Принципиально новые возможности открывает сверхпроводимость в создании М. с. — индуктивных накопителей энергии с практически неограниченным временем её хранения.

  Лит.: Роуз-Инс А., Родерик Е., Введение в физику сверхпроводимости, пер. с. англ., М., 1972; Зенкевич В. Б., Сычев В. В., Магнитные системы на сверхпроводниках, М., 1972; Кремлёв М. Г., Сверхпроводящие магниты, «Успехи физических наук», 1967, т. 93, в. 4.

  Б. Н. Самойлов.

Рис. 2. Основные элементы конструкции сверхпроводящего магнита: 1 — контакт для присоединения к внешним цепям; 2 — многожильный сверхпроводящий провод в изоляционном покрытии, припаянный к контакту; 3 — рабочий объём соленоида, максимальная напряжённость поля создаётся в его центре; 4 — текстолитовый диск для монтажа контактов и закрепления соленоида в криостате; 5 — металлический каркас соленоида; 6 — сверхпроводящая обмотка; 7 — силовой бандаж обмотки; 8 — изолирующие прокладки между слоями обмотки из полимерной плёнки или лакоткани.

Рис. 1б. Поперечное сечение многожильного комбинированного проводника с 61 нитью (слева) и 1045 нитями (справа) в медной матрице.

Рис. 3. Установка Института атомной энергии им. И. В. Курчатова, в которой испытываются секции сверхпроводящих магнитных систем диаметром около 1 м . В средней части фотографии видна закрепленная на крышке криостата испытываемая секция (С), внизу — цилиндрический криостат (К).

Рис. 4. Схематическое изображение включения сверхпроводящего магнита в цепи питания и защиты (разрядки): 1 — дьюар с жидким азотом; 2 — дьюар с жидким гелием; 3 — соленоид; 4 — нагреватель; 5 — источник питания соленоида; 6 — разрядное сопротивление; 7 — реле защиты; 8 — управляющее устройство.

Рис. 1а. Схематическое изображение многожильного сверхпроводящего провода: комбинированный скрученный проводник (1 — сверхпроводящие нити, 2 — матрица).

Магнитка

Магни'тка, посёлок городского типа в Кусинском районе Челябинской области РСФСР. Расположен на Южном Урале, на реке Куса (бассейн Камы), в 17 км к северу от Златоуста. 12,5 тысяч жителей (1972). Добыча железной руды.

Магнитная анизотропия

Магни'тная анизотропи'я, неодинаковость магнитных свойств тел по различным направлениям. Причина М. а. заключается в анизотропном характере магнитного взаимодействия между атомными носителями магнитного момента в веществах. В изотропных газах, жидкостях, поликристаллических твёрдых телах М. а. в макромасштабе не проявляется. Напротив, в монокристаллах М. а. приводит к большим наблюдаемым эффектам, например к различию величины магнитной восприимчивости парамагнетиков вдоль различных направлений в кристалле. Особенно велика М. а. в монокристаллах ферромагнетиков, где она проявляется в наличии осей лёгкого намагничивания , вдоль которых направлены векторы самопроизвольной намагниченности Js ферромагнитных доменов . Мерой М. а. для данного направления в кристалле является работа намагничивания внешнего магнитного поля, необходимая для поворота вектора Js из положения вдоль оси наиболее лёгкого намагничивания в новое положение — вдоль внешнего поля. Эта работа при постоянной температуре определяет свободную энергию М. а. F для данного направления (см. Ферромагнетизм ). Зависимость F от ориентации Js в кристалле определяется из соображений симметрии. Например, для кубических кристаллов:

,

  где a1 , a2 , a3 — направляющие косинусы Js относительно осей кристалла [100] (рис. ), K1 — первая константа естественной кристаллографической М. а. Величина и знак её определяются атомной структурой вещества, а также зависят от температуры, давления и т.п. Например, в железе при комнатной температуре K1 ~ 105 эрг/см3 (104дж/м3 ), а в никеле K1 ~ —104эрг/см3 (—103дж/м3 ). С ростом температуры эти величины уменьшаются, стремясь к нулю в Кюри точке . У антиферромагнетиков, ввиду наличия у них не менее двух магнитных подрешёток (J1 и J2 ), имеется, по крайней мере, две константы М. а. Для одноосного антиферромагнитного кристалла Fан записывается в виде

(z — направление оси М. а.). Значения констант а и b того же порядка, что и у ферромагнетиков. У антиферромагнетиков наблюдается большая анизотропия магнитной восприимчивости c; вдоль оси лёгкого намагничивания c стремится с понижением температуры к нулю, а в перпендикулярном к оси направлении (ниже Нееля точки ) c не зависит от температуры.

  Экспериментально константы М. а. могут быть определены из сопоставления значений энергии М. а. для различных кристаллографических направлений. Другой метод определения констант М. а. сводится к измерению моментов вращения, действующих на диски из ферромагнитных монокристаллов во внешнем поле (см. Анизометр магнитный ), так как эти моменты пропорциональны константам М. а. Наконец, эти константы можно определить графически по площади, ограниченной кривыми намагничивания ферромагнитных кристаллов и осью намагниченности, ибо эта площадь также пропорциональна константам М. а. Значения констант М. а. могут быть определены также из данных по электронному парамагнитному резонансу (для парамагнетиков), по ферромагнитному резонансу (для ферромагнетиков) и по антиферромагнитному резонансу (для антиферромагнетиков). Вследствие магнитострикции в магнетиках наряду с естественной кристаллографической М. а. наблюдается также магнитоупругая анизотропия, которая возникает при наложении на образец внешних односторонних напряжений. В поликристаллах, при наличии в них текстуры магнитной или текстуры кристаллографической, также проявляется М. а.