Лит.: Акулов Н. С., Ферромагнетизм, М. — Л., 1939; Бозорт Р, Ферромагнетизм, перевод с английского, М., 1956; Вонсовский С. В. и Шур Я. С., Ферромагнетизм, М. — Л., 1948; Вонсовский С. В., Магнетизм, М, 1971.
С. В. Вонсовский.
Магнитная анизотропия кубических монокристаллов железа. Приведены кривые намагничивания для трёх главных кристаллографических осей [100], [110] и [111] ячейки кристалла железа; J — намагниченность, Н — напряжённость намагничивающего поля.
Магнитная антенна
Магни'тная анте'нна,рамочная антенна (обычно многовитковая) с сердечником из магнитного материала. В качестве магнитных материалов чаще всего используют магнитодиэлектрики или ферриты (ферритовая антенна), М. а. применяются преимущественно для приёма радиоволн в радиопеленгации, радионавигации и особенно широко в малогабаритных радиовещательных приёмниках. Диаграмма направленности их такая же, как у обычной рамочной антенны. Рамка М. а. обычно подключается к конденсатору переменной ёмкости, образуя на входе приёмника настраиваемый на рабочую длину волны параллельный резонансный контур. При больших мощностях электрических колебаний (например, в режиме передачи) в сердечнике М. а. возбуждается сильное электромагнитное поле, что приводит к нежелательному изменению её характеристик. Сердечник М. а. выполняется в виде сплошного стержня либо, при больших её размерах, набирается из отдельных секций. Внесение сердечника внутрь рамки (обмотки из проводника тока) увеличивает индуктируемую в рамке эдс в N раз, сопротивление излучения М. а. в N2 раз, индуктивность рамки примерно в N раз. Значение N определяется по формуле: N = mэф × b2 / r2 , где mэф — эффективное значение магнитной проницаемости сердечника, зависящее от начальной магнитной проницаемости материала сердечника m и отношения его длины к радиусу, b — радиус сердечника, r — радиус рамки.
Наряду с положительным эффектом увеличения эдс введение сердечника в рамку сопровождается увеличением тепловых потерь в ней, вызванных наведёнными в сердечнике токами проводимости и потерями на гистерезис . Потери, как правило, больше при использовании материалов с высокими значениями магнитной проницаемости и растут с укорочением длины принимаемой волны. Это ограничивает диапазон использования М. а. гектометровыми и километровыми волнами и целесообразные значения N , которые для декаметровых волн, например, не превышают нескольких десятков.
Лит.: Хомич В. И., Ферритовые антенны, 3 изд., М.. 1969; Вершков М. В., Судовые антенны, Л., 1972.
Г. А. Лавров.
Магнитная восприимчивость
Магни'тная восприи'мчивость, физическая величина, характеризующая связь между магнитным моментом (намагниченностью) вещества и магнитным полем в этом веществе.
Объёмная М. в. равна отношению намагниченности единицы объёма вещества J к напряжённости Н намагничивающего магнитного поля: = J /H . М. в. — величина безразмерная и измеряется в безразмерных единицах М. в., рассчитанная на 1 кг (или 1 г ) вещества, называется удельной (уд = /r, где r — плотность вещества), а М. в. одного моля — молярной: c = уд ×М , где М — молекулярная масса вещества.
М. в., может быть как положительной, так и отрицательной. Отрицательной М. в. обладают диамагнетики , они намагничиваются не по полю, а против поля. У парамагнетиков и ферромагнетиков М. в. положительна (они намагничиваются по полю). М. в. диамагнетиков и парамагнетиков мала (~10-4 —10-6 ), она слабо зависит от Н и то лишь в области очень сильных полей (и низких температур). Значения М. в. приведены в таблице.
Магнитная восприимчивость некоторых диамагнетиков и парамагнетиков (при нормальных условиях)*
Диамагнетики | c·106 | Парамагнетики | c·106 |
Элементы | Элементы | ||
Гелий He | –2,02 | Литий Li | 24,6 |
Неон Ne | –6,96 | Натрий Na | 16,1 |
Аргон Ar | –19,23 | Калий K | 21,35 |
Медь Cu | –5,41 | Рубидий Rb | 18,2 |
Серебро Ag | –21,5 | Цезий Cs | 29,9 |
Золото Au | –29,59 | Магний Mg | 13,25 |
Цинк Zn | –11,40 | Кальций Ca | 44,0 |
Бериллий Be | –9,02 | Стронций Sr | 91,2 |
Висмут Bi | –284,0 | Барий Ba | 20,4 |
Неорганические соединения | Титан Ti | 161,0 | |
AgCl | –49,0 | Вольфрам W | 55 |
BiCl3 | –100,0 | Платина Pt | 189,0 |
CO2 (газ) | –21 | Уран U | 414,0 |
H2 O (жидкость) | –13,0 (0 °C) | Плутоний Pu | 627,0 |
Органические соединения | Неорганические соединения | ||
Анилин C6 H7 N | –62,95 | CoCl2 | 121660 |
Бензол C6 H6 | –54,85 | EuCl2 | 26500 |
Дифениламин C12 H11 N | –107,1 | MnCl2 | 14350 |
Метан CH4 (газ) | –16,0 | FeS | 1074 |
Октан C8 H18 | –96,63 | UF6 | 43 |
Нафталин C10 H8 | –91,8 |
* Данные приведены для СГС системы единиц
М. в. достигает особенно больших значений в ферромагнетиках (от нескольких десятков до многих тысяч единиц), причём она очень сильно и сложным образом зависит от Н. Поэтому для ферромагнетиков вводят дифференциальную М. в. kд = dJ / dH . При Н = 0 (см. рис. ) М. в. ферромагнетиков не равна нулю, а имеет значение kа , называемое начальной М. в. С увеличением Н М. в. растет, достигает максимума (kмакс ) и затем вновь уменьшается. В области очень высоких значений Н М. в. ферромагнетиков (при температурах, не очень близких к точке Кюри) становится столь же незначительной, как и в обычных парамагнетиках (область парапроцесса ). Вид кривой k (H ) (кривая Столетова) обусловлен сложным механизмом намагничивания ферромагнетиков. Типичные значения k а и kмакс : Fe ~ 1100 и ~ 22000, Ni ~ 12 и ~ 80, сплав пермаллой ~ 800 и ~8000 (в нормальных условиях).
М. в., как правило, зависит от температуры (исключение составляют большинство диамагнетиков и некоторые парамагнетики — щелочные и, отчасти, щёлочноземельные металлы). М, в. парамагнетиков уменьшается с температурой, следуя Кюри закону или Кюри — Вейса закону . В ферромагнитных телах М. в. с ростом температуры увеличивается, достигая резкого максимума вблизи точки Кюри q. М в. антиферромагнетиков увеличивается с ростом температуры до точки Нееля, а затем падает по закону Кюри — Вейса (см. Кюри точка ).