Выбрать главу

  Известные точные решения, однако, далеко не исчерпывают содержания теоретических М. г. сред с Rm >> 1. Широкий класс задач удаётся исследовать приближённо. При таком исследовании возможны два основных подхода: приближение слабого поля, когда магнитные давление и натяжение малы по сравнению с остальными динамическими факторами (газодинамическим давлением и инерциальными силами), и приближение сильного поля, когда

     (3)

здесь u — скорость среды, р — её газодинамическое давление.

  В приближении слабого поля течение среды определяется обычными газодинамическими факторами (влиянием магнитных натяжений пренебрегают). При этом требуется рассчитать изменения поля в среде, движущейся по заданному закону. К этому классу задач относится очень важная проблема гидромагнитного динамо и проблема МГД-турбулентности. Первая состоит в отыскании ламинарных течений проводящих сред, которые могут создавать, усиливать и поддерживать магнитное поле. Задача о гидромагнитном динамо является основой теории земного магнетизма и магнетизма Солнца и звёзд. Существуют простые кинематические модели, показывающие, что гидромагнитное динамо в принципе может быть осуществлено при специальном выборе распределений скоростей среды. Однако строгого доказательства, что такие распределения реализуются в действительности, пока нет.

  Основным в проблеме МГД-турбулентности является выяснение поведения слабого исходного («затравочного») магнитного поля в турбулентной проводящей среде (см. Турбулентность ). Имеется доказательство роста среднего квадрата напряжённости случайно возникшего слабого начального поля, то есть возрастания магнитной энергии в начальной стадии процесса. Однако остаётся открытой проблема установившегося турбулентного состояния, связанная с происхождением магнитных полей в космическом пространстве, в частности в нашей и других галактиках .

  Приближение сильного поля, в котором определяющими являются магнитные натяжения, применяют при изучении разреженных атмосфер космических магнитных тел, например Солнца и Земли. Есть основания полагать, что именно это приближение окажется полезным для исследования процессов в удалённых астрофизических объектах — сверхновых звёздах , пульсарах , квазарах и прочих. В условиях, отвечающих (3), изменения магнитного поля вблизи его источников (появление активных областей и пятен на Солнце, смещение магнитопаузы в магнитном поле Земли под действием солнечного ветра и т.д.) переносятся с альфвеновской скоростью (2) вдоль поля, вызывая соответствующие перемещения плазмы. В результате действия магнитных сил возникают такие характерные образования, как выбросы и протуберанцы, шлемовидные структуры и стримеры на Солнце, магнитный хвост Земли (см. Солнце ; Солнечная активность ; Земля , раздел Магнитосфера).

  Особенно интересные явления имеют место в окрестностях тех точек сильного поля, в котором оно обращается в нуль. В таких областях образуются тонкие токовые слои, разделяющие магнитные поля противоположного направления (так называемые нейтральные слои). В этих слоях происходит процесс «аннигиляции» магнитной энергии, то есть её высвобождение и превращение в другие формы. В частности, в них возникают сильные электрические поля, ускоряющие заряженные частицы. Аннигиляция магнитного поля в нейтральных токовых слоях ответственна за появление хромосферных вспышек на Солнце и суббурь в земной магнитосфере (см. Магнитные бури ). Вероятно, с ней связаны и многие другие резко нестационарные процессы во Вселенной, сопровождающиеся генерацией ускоренных заряженных частиц и жёстких излучений. С точки зрения М. г. нейтральные слои представляют собой разрывы непрерывности магнитного поля (подобно ударным волнам и тангенциальным разрывам). Однако, процессы в токовых слоях , и прежде всего неустойчивости, приводящие к появлению сильных ускоряющих электрических полей, выходят за рамки М. г. и относятся к тонким и ещё не вполне разработанным вопросам физики плазмы.

  Лит.: Апьфвен Г., Фельтхаммар К.-Г., Космическая электродинамика, перевод с английского, 2 изд., М., 1967; Сыроватский С. И., Магнитная гидродинамика, «Успехи физических наук», 1957, т. 62, в. 3; Куликовский А. Г., Любимов Г. А., Магнитная гидродинамика, М., 1962; Шерклиф Дж.. Курс магнитной гидродинамики, перевод с английского, М., 1967; Половин Р. В., Ударные волны в магнитной гидродинамике, «Успехи физических наук»,1960, т. 72, в. 1; Брагинский С. И., Явления переноса в плазме, в сборнике: Вопросы теории плазмы, вып. 1, М., 1963; Пикельнер С. Б., Основы космической электродинамики, М., 1966; Данжи Дж., Космическая электродинамика, перевод с английского, М., 1961; Андерсон Э., Ударные волны в магнитной гидродинамике, перевод с английского, М., 1968; Ландау Л. Д., Лифшиц Е. М., Электродинамика сплошных сред, М., 1959 (Теоретическая физика).