Выбрать главу

  В основном водяной пар содержится в нижней части атмосферы — тропосфере, поэтому именно здесь на различных высотах и сосредоточено подавляющее большинство О. Однако нередко в стратосферу проникают перистые и кучево-дождевые О., последние могут иногда достигать высоты 16 и более км. В стратосфере могут также возникать перламутровые О.(на высоте около 25 км), а в мезосфере — серебристые (около 80 км). К основным формам О. (см. табл.) относятся: О. нижнего яруса — слоистые (однородный, лишённый упорядоченной структуры, сравнительно тонкий слой), слоисто-кучевые (слой с ясно выраженной структурой в виде волн, гряд или крупных «пластин») и слоисто-дождевые (сплошная серая пелена большой вертикальной мощности, дающая длительные осадки в виде обложного дождя или снега); О. среднего яруса — высоко-слоистые (сероватая или чуть синеватая пелена) и высоко-кучевые (похожие на слоисто-кучевые, но более тонкие. О. верхнего яруса — перистые (неплотные, часто просвечивающие О. в виде отдельных параллельных или спутанных нитей), перисто-слоистые (белая или голубоватая, довольно однородная пелена) и перисто-кучевые (тонкие, полупрозрачные О. в виде ряби или скопления хлопьев) и, наконец, О. вертикального развития, имеющие сравнительно плоские основания и куполообразные вершины часто причудливых очертаний кучевые, мощно-кучевые и кучево-дождевые. Имеются многочисленные разновидности основным форм О.

  Образование О. связано с возникновением в атмосфере областей с высокой относит. влажностью. Наличие в атмосфере огромного числа мельчайших частиц, играющих роль ядер конденсации, обеспечивает появление зародышевых капель уже при достижении насыщения. Условия же насыщения создаются в результате охлаждения воздуха, вызванного, например, расширением его при упорядоченном подъеме на фронтах атмосферных (так образуются О. Ns и системы Ns—As—Ac), при неупорядоченном турбулентном перемешивании или волновых движениях (St, Sc, Ac), при конвективном подъеме (Cu, Cu Cong, Cb), при отекании горных препятствий (Ac) и др. Дальнейшее охлаждение воздуха приводит к появлению избыточного пара, который поглощается растущими каплями. Т. о., первоначально капли растут преимущественно за счёт конденсации водяного пара. Затем по мере их укрупнения, всё большую роль начинают играть процессы столкновения и слияния капель друг с другом (т. н. коагуляция облачных элементов). Коагуляционный механизм — основной механизм роста облачных капель радиусом более 30 мкм. При отрицательных температурах О. могут быть капельные (переохлажденные), кристаллические или смешанные, т. е. состоящие из капель и кристаллов. Малые размеры облачных капель позволяют им долго сохраняться в жидком виде и при отрицательных температурах. Так, при —10 °С О. в половине случаев капельные, в 30% — смешанные и лишь в 20% кристаллические. Переохлажденные же капли в О. встречаются вплоть до —40 °С. Пересыщение над кристаллами значительно больше, чем над каплями (насыщающая упругость водяного пара над льдом ниже, чем над водой), благодаря чему в смешанных О. кристаллы растут значительно быстрее капель, что способствует выпадению осадков.

  Размеры подавляющего большинства капель в О. составляют тысячные и сотые доли мм, а их концентрация — сотни в 1 см3. Кристаллы обычно имеют в десятки раз б_ольшие размеры, а концентрация их в тысячи и десятки тысяч раз меньше (до сотни в 1 л). Форма кристаллов зависит главным образом от температуры их образования и чрезвычайно разнообразна — иглы, столбики, пучки столбиков, тонкие и толстые пластинки и, наконец, просто частицы неправильной формы. В О., как правило, присутствуют и «сверхкрупные» капли, достигающие десятых долей мм с концентрацией единицы и менее в 1 л. Подобные частицы являются зародышами осадков и вносят основной вклад в радиолокационный сигнал от капельных облаков. Масса сконденсированной воды в единице объёма О. называется водностью О. и колеблется обычно от десятых долей до неск. г/м3 для капельных О. и от тысячных до десятых долей г/м3 в кристаллических. Данные о физическом строении О. получены главным образом с помощью самолётов — летающих лабораторий, оснащенных специальной аппаратурой. Дифракция и преломление света в частицах О. вызывают различные оптические явления — глории, гало, венцы и др.,— по которым можно судить о наличии в О. капель или кристаллов. Широкое применение находят радиолокационные методы исследования О., развиваются спутниковые и лазерные методы.