Операторов теория
Опера'торов тео'рия , часть функционального анализа , посвященная изучению свойств операторов и применению их к решению различных задач. Понятие оператора — одно из самых общих математических понятий.
Примеры:
1) Отнеся каждому вектору (x1 , x2 , x3 ) вектор (x’1 , x’’2 , x’3 ) так, что x’i = ai 1 x1 + ai 2 x2 + ai 3 x3 (i = 1, 2, 3; ai 1 , ai 2 , ai 3 — фиксированные числа), получим некоторый оператор.
2) Операция (оператор) дифференцирования D [f (t )] = f’ (t ) относит каждой дифференцируемой функции f (t ) её производную f’ (t ).
3) Операция (оператор) определённого интегрирования I =
4) Отнеся каждой функции f (t ) её произведение j(t ) f (t ) на фиксированную функцию j(t ), снова получаем оператор.
Общая О. т. возникла в результате развития теории интегральных уравнений, решения задач на нахождение собственных функций и собственных значений для дифференциальных операторов (см., например, Штурма — Лиувилля задача ) и др. разделов классического анализа. О. т. установила тесные связи между этими разделами математики и сыграла важную роль в их дальнейшем развитии. Ещё до возникновения общего понятия оператора операторные методы широко применялись в решении различных типов дифференциальных уравнений, обыкновенных и с частными производными (см. Операционное исчисление ). О. т. представляет собой основной математический аппарат квантовой механики (см. Операторы в квантовой теории).
Операторы в линейных пространствах
. Чаще всего встречаются операторы, действующие в линейных нормированных пространствах (см. Линейное пространство
),
в частности в функциональных пространствах, т. е. отображения у = А
(х
) линейного пространства R
или его части в некоторое линейное пространство R'
(возможно, совпадающее с R
). Этот класс операторов охватывает такие важнейшие понятия, как числовые функции
, линейные преобразования
евклидова пространства, дифференциальные и интегральные операторы (см. ниже) и т.д. Наиболее изученными и важными для приложений являются линейные операторы. Оператор называется линейным, если A
(ax+
by
) =
aА
(х
) +
bА
(у
) для любых элементов х
, у
пространства R
и любых чисел a, b. Если пространства R
и R'
нормированы, а отношение
Приведённые выше примеры 1—4 представляют собой примеры линейных операторов. Дальнейшие примеры линейных операторов:
5) Пусть k (s , t ) — непрерывная функция двух переменных, заданная в квадрате a £ s £ b , а £ t £ b . Формула
определяет линейный интегральный оператор, называется оператором Фредгольма.
6) Каждой абсолютно интегрируемой на всей прямой функции f (t ) поставим в соответствие функцию
называется Фурье преобразованием исходной функции. Это соответствие также представляет собой линейный оператор.
7) Левую часть линейного дифференциального уравнения
можно рассматривать как результат применения некоторого оператора, ставящего в соответствие функции x (t ) функцию j(t ). Такой оператор носит название линейного дифференциального оператора. Простейшим частным случаем линейного дифференциального оператора является оператор дифференцирования.
Примеры нелинейных операторов:
8) Пусть A [f (t )] = f 2 (t ); определённый т. о. оператор является нелинейным.
9) Пусть
(F — некоторая ограниченная непрерывная функция). Соответствие g ® h , определяемое этой формулой, представляет собой нелинейный интегральный оператор.
Действия над операторами . Пусть дан оператор