Выбрать главу
; наилучшая достигнутая точность — 5×10–4 (В. Мейер и др., 1963).

  История частной теории относительности

  Хотя О. т. в логическом смысле проста, путь, приведший к ней, был сложным. Справедливость принципа относительности для механических явлений и его связь с явлением инерции были поняты после появления теории Н. Коперника : отсутствие видимых проявлений движения Земли с неизбежностью приводило к заключению, что общее движение системы не сказывается на происходящих в ней механических явлениях. Уже в 16 в. это поясняли, описывая эксперименты на движущемся корабле. Классическое изложение принципа относительности было дано в 1632 Г. Галилеем : «Заставьте теперь корабль двигаться с любой скоростью и тогда (если только движение будет равномерным и без качки в ту и другую сторону) во всех...явлениях вы не обнаружите ни малейшего изменения и ни по одному из них не сможете установить, движется ли корабль или стоит неподвижно» (Галилей Г., Диалог о двух главнейших системах мира: птоломеевой и коперниковой, М.–Л., 1948, с. 147). Принцип относительности широко использовался Х. Гюйгенсом для решения задач механики.

  Полная система законов движения для любой механической системы была дана И. Ньютоном в «Началах» (1687). Ньютон, установив, что законы механики не могут быть справедливыми в любой системе отсчёта, ввёл понятия абсолютного пространства и абсолютного времени; по существу это были для него система отсчёта и временная переменная t , для которых выполнялись законы движения. Вопрос об измерении времени в механике Ньютона был простым, т.к. любые равномерно движущиеся часы годились для измерения t . Более сложным был вопрос об абсолютном пространстве. В механике Ньютона выполнялся принцип относительности. Согласно формулировке Ньютона, «относительные движения друг по отношению к другу тел, заключённых в каком-либо пространстве, одинаковы, покоится ли это пространство или движется равномерно и прямолинейно без вращения» («Математические начала натуральной философии», см. Крылов А. И., Собрание трудов, т. 7, 1936, с. 49). Поэтому нельзя было отличить покоящуюся в абсолютном пространстве систему отсчёта от равномерно движущейся. Переход от одной и. с. о. к другой в механике Ньютона описывался преобразованиями x ’ = х – ut , t ’ = t , называется сейчас преобразованиями Галилея. Такая форма преобразований казалась очевидной, т.к. не сомневались в том, что длины предметов должны быть одинаковыми в любой системе отсчёта, а время единым. Эта уверенность подтверждалась инвариантностью законов Ньютона относительно преобразований Галилея. Столь же несомненным казалось то, что для оптических явлений принцип относительности несправедлив. Уже в 17 в. широко использовалось представление о заполняющей пространство среде — эфире . Среди многих функций, приписывавшихся эфиру, была передача световых возмущений. В начале 19 в. была разработана оптика Т. Юнга — О. Френеля , в которой скорость света относительно эфира считалась константой, не зависящей от движения источника. Отсюда следовало нарушение принципа относительности, т.к. для наблюдателя, движущегося в эфире со скоростью u навстречу световому лучу, скорость света должна была бы равняться с + u (эфирный ветер). Такой эфирный ветер должен был бы возникать, в частности, из-за орбитального движения Земли (со скоростью 30 км /сек ). Поиски эфирного ветра затруднялись, однако, тем, что уже по теории Френеля эффекты порядка u /c (~10–4 для орбитального движения Земли) должны отсутствовать в широком классе опытов.

  Проблема эфира заняла одно из центр. мест в физике после построения Дж. Максвеллом теории электромагнитного поля, в которой эфир стал носителем не только световых волн, но и электрических и магнитных полей. Попытки обнаружения эфирного ветра были сделаны А. Майкельсоном (1881) и А. Майкельсоном и Э. Морли (1887), искавшими эффект порядка u 2 /c 2 , и дали отрицательный результат (см. Майкельсона опыт ). Возникла проблема согласования опыта Майкельсона с оптикой и электродинамикой, основанными на представлении об эфире. Наиболее очевидными казались объяснения, базирующиеся на гипотезе полного увлечения эфира движущимися телами. Оптические и электромагнитные теории, использовавшие эту гипотезу, обсуждались (Дж. Г. Стокс , Г. Герц ), но они оказались либо внутренне противоречивыми, либо не описывали всей совокупности экспериментальных фактов. Наиболее успешной была электродинамика Х. Лоренца , в основе которой лежало представление о неподвижном эфире и которая, на первый взгляд, была несовместима с принципом относительности. В 1892 Лоренц (ранее английский физик Дж. Фицджеральд, 1889) заметил, что отрицательный результат опыта Майкельсона объясняется, если продольные размеры всех тел сокращаются в