Выбрать главу

  Лит.: Тарский А., Введение в логику и методологию дедуктивных наук, пер. с англ., М., 1948; Чёрч А., Введение в математическую логику, пер. с англ., т. 1, М., 1960; Уемов А. И., Вещи, свойства и отношения, М., 1963; Шрейдер Ю. А., Равенство, сходство, порядок, М., 1971.

  Ю. Л. Гастев.

(обратно)

Ото...

Ото... (от греч. ús, род. падеж ōtós — ухо), часть сложных слов, указывающая на их отношение к уху, болезням уха (например, оториноларинголог, отосклероз).

(обратно)

Отображение

Отображе'ние (матем.) множества А в множество В , соответствие, в силу которого каждому элементу х множества А соответствует определённый элемент у = f (x ) множества В , называют образом элемента х (элемент х называют прообразом элемента у ). Иногда под О. понимают установление такого соответствия. Примерами О. могут служить параллельное проектирование одной плоскости на другую, стереографическая проекция сферы на плоскость. Географическая карта может рассматриваться как результат О. точек земной поверхности (или части её) на точки куска плоскости. Логически понятие «О.» совпадает с понятиями функция , оператор , преобразование . Как средство исследования О. даёт возможность заменять изучение соотношений между элементами множества А изучением соотношений между элементами множества В , что в ряде случаев может оказаться проще. Так, параллельным проектированием можно отобразить параллелограмм в квадрат, центральным проектированием – любую линию второго порядка в окружность и т.д. Многие свойства остаются неизменными (инвариантными) при О. Так, при параллельном проектировании сохраняется параллельность прямых, отношение отрезков длин параллельных прямых и т.д.

  Если каждый элемент множества В является образом элемента множества А , то О. называется отображением А на множество В . Если каждый элемент из В имеет один и только один прообраз, то О. называется взаимно однозначным. О. называется непрерывным, если близкие элементы множества А переходят в близкие элементы множества В . Точнее это означает, что если элементы x 1 , x 2 ,..., хп ,... сходятся к x , то элементы f (x 1 ), f (x 2 ),..., f (хn ),... сходятся к f (x ).

  Каждой части Т множества А соответствует часть f (T ) множества В , состоящая из образов точек этой части; она называется образом Т . Если все точки части Q множества В являются образами точек из А , то совокупность всех точек х из А таких, что f (x ) лежит в Q , называются полным прообразом Q и обозначается f –1 (Q ). При взаимно однозначном О. полный прообраз каждого элемента множества В состоит из одного элемента множества А .

  Взаимно однозначное О. имеет обратное О., сопоставляющее элементу у из В его прообраз f –1 (y ). Взаимно однозначное О. называется топологическим, или гомеоморфным, если как оно, так и обратное ему О. непрерывны. При гомеоморфных О. сохраняются лишь наиболее общие свойства фигур, как, например, связность,, ориентируемость, размерность и др. Так, квадрат и круг гомеоморфны, но квадрат и куб не гомеоморфны. Свойства фигур, не изменяющиеся при гомеоморфных О., изучаются в топологии. Если в множествах А и В имеются некоторые соотношения и если эти соотношения сохраняются при О., то О. называется изоморфным относительно этих соотношений (см. Изоморфизм ).

  В математическом анализе большую роль играют О. одного множества функций на другое. Например, дифференцирование может рассматриваться как О., при котором функции f (x ) соответствует функция f ’I (x ). Среди таких О. наиболее простыми являются О., при которых сумма функций переходит в сумму, а при умножении функции на число образ её умножается на то же число. Такие О. называются линейными, их изучают в функциональном анализе . См. также Линейное преобразование , Операторов теория .

  В ряде случаев в множествах А и В можно ввести координаты, т. е. задавать каждую точку этих множеств системой чисел (x1 ,..., хп ) и (y1 ,..., уп ). Тогда О. задаётся системой функций ук = fk (x1 ,..., xn ). 1 £ k £ m . В большинстве встречающихся на практике случаев функции f1 , f2 ,..., fm дифференцируемые: тогда О. называется дифференцируемым. Если О. дифференцируемо, m= n и якобиан О. отличен от нуля, то О. взаимно однозначно.