Выбрать главу

Большая Советская Энциклопедия (ПФ)

Пфальц

Пфальц (Pfalz), средневековое княжество на Ю.-З. Германии. Известно с 12 в., когда владетели П. закрепили за собой титул и права пфальцграфов и стали именоваться пфальцграфами Рейнскими (по месту расположения территории княжества). В 1214 П. перешёл к роду баварских Виттельсбахов. В 1329 отделился от Баварии под властью особой ветви Виттельсбахов; к нему отошла также северная часть Баварии, которая в отличие от Рейнского, или Нижнего, получила название Верхний П. В 1356 пфальцграфы Рейнские получили права курфюрстов. В 1386 в их резиденции Гейдельберге был основан первый в Германии университет. Во время Реформации П. — оплот кальвинизма (со 2-й половины 16 в.). Курфюрст П. Фридрих V, возглавлявший Протестантскую унию германских князей, в 1619 был избран королём Чехии, но в ходе Тридцатилетней войны 1618—48 после поражения чешских войск в 1620 у Белой Горы потерял Чехию, а в 1623 и П., который был передан Баварии. По Вестфальскому миру 1648 курфюршество П. (но без Верхнего П.) было восстановлено. В 1793—94 часть Рейнского П. была занята французскими войсками и в 1801 присоединена к Франции, другая часть поделена между германскими княжествами. В 1814—15 большая часть П. отошла к Баварии, меньшая была разделена между Пруссией, Баденом и Гессен-Дармштадтом.

Пфальцграф

Пфа'льцграф (нем. Pfaizgraf, буквально — дворцовый граф), во Франкском государстве придворный королевский служащий, председательствовавший в дворцовом суде (при Каролингах занял высокое положение, суд П. обособился от королевского). В Германии 9—11 вв. П., как и граф округа, считался формально королевским должностным лицом, но со временем превратился во владетельного князя. Особенно высокое положение занял П. Рейнский (князь Пфальца). Титул П. был отменен в 1806.

Пфальцский лес

Пфа'льцский лес (Pfalzer Wald), горы на З. ФРГ, по левобережью р. Рейн, между Вогезами на Ю. и Рейнскими Сланцевыми горами на С. Длина около 100 км, высота до 687 м (гора Доннерсберг). Восточная, наиболее высокая часть П. Л. (Хардт), круто обрывается к Верхнерейнской низменности. Сложены преимущественно пестроцветными песчаниками, образующими причудливые формы выветривания. Состоят из нескольких ступенчато понижающихся к З. плоскогорий, глубоко расчленённых притоками Рейна. Широколиственные и сосновые леса, местами верещатники. В П. Л. — одноимённый природный парк.

Пфальцское наследство

Пфа'льцское насле'дство, Война за Пфальцское наследство, Орлеанская война, велась в 1688—97 между Францией и коалицией европейских государств — так называемой Аугсбургской лигой. Началась в сентябре 1688 с вторжения в Пфальц французских войск Людовика XIV, который выступил с притязаниями на значительную часть территории Пфальцапод предлогом защиты прав жены своего брата герцогини Орлеанской (дочери умершего в 1685 курфюрста Карла Пфальцского). Военные действия распространились и на др. районы Германии, на Нидерланды, Испанию; французские войска были посланы также в Ирландию для поддержки антианглийского восстания 1688—91; война шла и на море (вплоть до берегов Америки). Французская армия, подвергшая опустошению Пфальц, одержала ряд крупных побед на суше (при Флёрюсе 1 июля 1690, у Стенкеркена 3 августа 1692, у Нервиндена 29 июля 1693), но потерпела поражение от англо-голландского союзного флота у мыса Аг 29 мая 1692. Война закончилась Рисвикским миром 1697.

Пфафф Иоганн Фридрих

Пфафф (Pfaff) Иоганн Фридрих (22.12.1765, Штутгарт, — 21.4.1825, Галле), немецкий математик, член Берлинской АН (1817). Профессор математики университетов в Хельмштедте (1788—1810) и Галле (с 1810). П. принадлежат исследования по уравнениям в дифференциалах (так называемые Пфаффа уравнения).

  Соч.: Allgemeine Methode partielle Differentialgleichungen zu integrieren (1815), Lpz., 1902.

  Лит.: Kowalewski G. W. H., Grosse Mathematiker. Eine Wanderung durch die Geschichte der Mathematik, B. 1938, S. 228—47.

Пфаффа уравнения

Пфа'ффа уравне'ния, уравнения вида

X1dx1 + X2dx2 + ... + Xndxn = ,     (1)

где X1, X2, ..., Xn заданные функции независимых переменных x1, x2, ..., xn. Изучались И. Ф. Пфаффом (1814—15). Решение уравнения (1) состоит из соотношений

     (2)

таких, что уравнение (1) является следствием их и соотношений df1 = 0, df2 = 0, ..., dfm= 0. Соотношения (2) определяют интегральное многообразие П. у. (1). Если через каждую точку n-мерного пространства x1, x2, ..., xnпроходит (n — 1)-мерная интегральная гиперповерхность, т. е. если уравнение (1) интегрируется одним соотношением, содержащим одну произвольную постоянную, то оно называется вполне интегрируемым.

  В случае трёх независимых переменных х, у, z П. у. может быть записано в виде

Pdx + Qdy + Rdz = 0,     (1’)

где Р = Р (х, у, z), Q = Q (х, у, z), R = R (х, у, z). Геометрически решение уравнения (1’) означает нахождение кривых в пространстве х, у, z, ортогональных в каждой своей точке векторному полю {Р, Q, R}, т. е. таких кривых, нормальная плоскость к которым в каждой точке содержит вектор поля. Такие кривые являются интегральными кривыми уравнения (1’). Если задать одно соотношение Ф (х, у, z) = 0 произвольно, т. е. искать интегральные кривые на произвольной гладкой поверхности, то из уравнения (1’) и соотношения