Аналогично П. плоскости определяются П. многомерных (в частности, трёхмерных) пространств. Для каждой из разобранных выше групп П. плоскости имеется трёхмерный аналог, получающийся из неё увеличением числа преобразуемых переменных. Так, группе 1 соответствует группа ортогональных преобразований , группе центро-аффинных П. — группа невырожденных линейных преобразований и т.д. Примером группы П. четырёхмерного пространства является группа Лоренца (см. Лоренца преобразования ), играющая важную роль в теории относительности. П. многомерных пространств используются в анализе при вычислении кратных интегралов, так как позволяют свести заданную область интегрирования к более простой области.
Как для групп П. плоскости, так и для групп П. многомерных пространств можно определить понятие близости П., позволяющее образовать непрерывные группы П. (см. Непрерывная группа ).
Для каждой из групп П. существуют свойства фигур, не изменяющиеся при П. соответствующей группы. Эти свойства являются, как говорят, инвариантами относительно данной группы П. Так, при преобразованиях группы движений инвариантно расстояние между двумя точками, при аффинных П. — параллельность прямых, отношение площадей двух фигур, при проективных П. — двойное отношение AB/AD: CB/CD точек A , В, С, D, лежащих на одной прямой. Каждой группе П. соответствует своя область геометрических исследований, изучающая свойства фигур, остающихся инвариантными при П. этой группы (см. Эрлангенская программа ). В соответствии с этим различают метрические свойства фигур, аффинные свойства, проективные свойства и т.д. Вообще говоря, чем шире группа, тем теснее связаны эти инвариантные свойства с фигурой. Наиболее общими являются свойства фигур, остающиеся инвариантными при любых топологических П. (т. е. любых взаимно однозначных и непрерывных П.). К ним относятся размерность, связность, ориентируемость (см. Топология ).
Особенно важную роль играют П. при установлении новых и при обобщении ранее известных теорем. Если в формулировку некоторой теоремы, доказанной для фигуры F, входят лишь свойства фигуры, инвариантные относительно некоторой группы П., то теорема сохраняет свою силу для всех фигур, получаемых из F П. этой группы (как говорят, гомологичных или эквивалентных F относительно этой группы). Это свойство П. особенно важно, если среди эквивалентных между собой фигур имеется такая, которая обладает в некоторых отношениях наиболее простыми свойствами. Так, ряд теорем проективной геометрии был установлен впервые для окружности, а потом перенесён на любые невырожденные конические сечения (все невырожденные конические сечения эквивалентны окружности относительно группы проективных П.). При решении геометрических задач на построение часто используют П., для того чтобы привести фигуры в наиболее удобные для решения положения.
Преобразования функций . Существенное значение имеет также теория групп П. для теории аналитических функций. Там рассматриваются классы функций, не изменяющихся при П., образующих некоторую группу (см. Автоморфные функции ).
Понятие П. играет важную роль и в функциональном анализе, где рассматриваются П. одного множества функций в другое. К таким П. относятся, например, Фурье преобразование , Лапласа преобразование и др. При этих П. каждой функции f ставится по определённому правилу в соответствие другая функция j. Например, преобразование Фурье имеет вид:
.
Оно, как и преобразование Лапласа, относится к классу интегральных П., определяемых формулами вида:
.
В ряде случаев П. позволяют заменить операции над функциями более простыми операциями над их образами (например, дифференцирование — умножением на независимую переменную), что облегчает решение уравнений.
Многие уравнения можно записать в виде f = Af, где f — искомая функция, а А — символ П. В этом случае задача решения уравнения может быть истолкована как задача нахождения функции, не изменяющейся при П. Эта точка зрения, называемая принципом неподвижной точки, позволяет в ряде случаев устанавливать существование и единственность решения (см. Сжатых отображений принцип ).
Лит.: Ефимов Н. В., Высшая геометрия, 5 изд., М., 1971; Клейн Ф., Высшая геометрия, пер. с нем., М. — Л., 1939; его же, Элементарная математика с точки зрения высшей. Лекции..., пер. с нем., 2 изд., т. 2, М. — Л., 1934; Адамар Ж., Элементарная геометрия, пер. с франц., 4 изд., ч, 1, М., 1957.
Преобразование представления величины
Преобразова'ние представле'ния величины' в вычислительной технике, процесс перевода машинных переменные величин из аналоговой формы в цифровую (аналого-цифровое преобразование) или наоборот (цифро-аналоговое преобразование). П. п. в. связано, например, с необходимостью в процессе вычислений на ЦВМ вводить и выводить данные в аналоговой форме — при работе ЦВМ в системе автоматического регулирования технологическими процессами, при построении гибридных вычислительных систем и т.п. См. также Преобразователь функциональный .
Преобразователь функциональный
Преобразова'тель функциона'льный , устройство, выходной сигнал которого у связан с одним либо несколько входными сигналами xi (где i = 1, 2,...) заданным алгоритмом функционирования. В зависимости от числа входных величин различают П. ф. одной, двух и более переменных. Функциональная зависимость выходных сигналов П. ф. от входных (единственного выходного при одном входном или каждого выходного при наличии нескольких входных сигналов) может быть задана в виде таблиц, графиков, аналитических выражений. Динамическая характеристика П. ф. y (x1 , x2 ,..., xn , t ) описывается дифференциальным уравнением, в правой части которого участвуют входной сигнал и его производные по времени (в общем случае), а в левой части — выходной сигнал и его производные по времени (в общем случае). Для инженерных расчётов динамическую характеристику П. ф. обычно удобнее всего характеризовать передаточными функциями по соответствующим каналам (входным сигналам).