Выбрать главу

  На основании отвердевания принципаравенства (1), не содержащие реакций внешних связей, дают одновременно необходимые (но недостаточные) условия равновесия любой механической системы и, в частности, деформируемого тела. Необходимые и достаточные условия равновесия любой механической системы могут быть найдены с помощью возможных перемещений принципа. Для системы, имеющей s степеней свободы, эти условия состоят в равенстве нулю соответствующих обобщённых сил:

Q1 = 0, Q2 = 0, ×××, Qs = 0.     (2)

  Из состояний равновесия, определяемых условиями (1) и (2), практически реализуются лишь те, которые являются устойчивыми (см. Устойчивость равновесия). Равновесия жидкостей и газов рассматриваются в гидростатике и аэростатике.

  С. М. Тарг.

Равновесие статистическое

Равнове'сие статисти'ческое, состояние замкнутой статистической системы, в которой среднее значения всех физических величин, характеризующих состояние, не зависят от времени. Р. с. — одно из основных понятий статистической физики, играющее такую же роль, как равновесие термодинамическое в термодинамике. Р. с. не является равновесным в механическом смысле, т.к. в системе при этом не прекращаются малые флуктуации. Теория Р. с. даётся в статистической физике, которая описывает его с помощью различных Гиббса распределений (микроканонического, канонического или большого канонического) в зависимости от типа контакта системы с окружающей средой.

Равновесие термодинамическое

Равнове'сие термодинами'ческое, состояние термодинамической системы, в которое она самопроизвольно приходит через достаточно большой промежуток времени в условиях изоляции от окружающей среды, после чего параметры состояния системы уже не меняются со временем. Изоляция не исключает возможности определённого типа контактов со средой (например, теплового контакта с термостатом, обмена веществом и др.). Процесс перехода системы в равновесное состояние называемое релаксацией. При Р. т. в системе прекращаются все необратимые процессы, связанные с диссипацией энергии, — теплопроводность, диффузия, химические реакции и т.д. Равновесное состояние системы определяется значениями её внешних параметров (объёма, напряжённости электрического или магнитного поля и др.), а также значением температуры. Строго говоря, параметры состояния равновесной системы не являются абсолютно фиксированными — в микрообъёмах они могут испытывать малые колебания около своих средних значений (флуктуации).

  Изоляция системы осуществляется в общем случае при помощи неподвижных стенок, непроницаемых для вещества. В случае, когда изолирующие систему неподвижные стенки практически не теплопроводны (например, в Дьюара сосудах), имеет место адиабатическая изоляция, при которой энергия системы остаётся неизменной. При теплопроводящих (диатермических) стенках между системой и внешней средой, пока не установилось равновесие, возможен теплообмен. При длительном тепловом контакте такой системы с внешней средой, обладающей очень большой теплоёмкостью (термостатом), температуры системы и среды выравниваются и наступает Р. т. При полупроницаемых для вещества стенках Р. т. наступает в том случае, если в результате обмена веществом между системой и внешней средой выравниваются химические потенциалы среды и системы.

  Одним из условий Р. т. является механическое равновесие, при котором невозможны никакие макроскопические движения частей системы, но поступательное движение и вращение системы как целого допустимы При отсутствии внешних полей и вращения системы условием её механического равновесия является постоянство давления во всём объёме системы. Другие необходимые условия Р. т. — постоянство температуры и химического потенциала в объёме системы. Достаточные условия Р. т. (условия устойчивости) могут быть получены из второго начала термодинамики (принципа максимальной энтропии); к ним, например, относятся: возрастание давления при уменьшении объёма (при постоянной температуре) и положительное значение теплоёмкости при постоянном давлении. В общем случае система находится в Р. т. тогда, когда термодинамический потенциал системы, соответствующий независимым в условиях опыта переменным, минимален. Например, при заданных объёме и температуре должна быть минимальна свободная энергия, а при заданных давлении и температуре — термодинамический потенциал Гиббса (см. Потенциалы термодинамические).

  Лит.: Кубо Р., Термодинамика, пер. с англ., М. ,1970; Самойлович А. Г., Термодинамика и статистическая физика, 2 изд., М., 1955; Ван-дер-Ваальс И. Д., Констамм Ф., Курс термостатики, ч. 1 — Общая термостатика, пер, с англ., М., 1936.

  Д. Н. Зубарев.

Равновесие химическое

Равнове'сие хими'ческое, состояние системы, в которой обратимо протекает одна или несколько реакций химических, причём для каждой из них скорости прямой и обратной реакций равны, вследствие чего состав системы остаётся постоянным, пока сохраняются условия её существования. В простейшем случае, когда система гомогенна и в ней протекает обратимая химическая реакция

А + В Û С + D,

скорость прямой реакции пропорциональна концентрациям реагирующих веществ

u1 = k1[A][B],

а скорость обратной реакции пропорциональна концентрациям продуктов реакции

u2 = k2[C][D],

где k1 и k2 — соответствующие константы скоростей при данных условиях. В начальный момент, когда [С] и [D] равны нулю, u2 = 0, a u1 определяется начальными концентрациями А и В. По мере расходования этих веществ и образования веществ С и D u1 уменьшается, a u2 возрастает, затем они становятся равными (u1 = u2), т. е. устанавливается Р. х. Из равенства u1 = u2 следует, что

'

где [С], [D], [А] и [В] — равновесные концентрации реагентов, а К — константа равновесия, зависящая для каждой обратимой реакции от внешних условий. Полученное соотношение есть выражение действующих масс закона; оно характеризует тот предел, до которого может меняться исходный состав системы при самопроизвольном течении реакции в данных условиях, т. е. без затраты работы извне. В условиях Р. х. концентрации (активности) всех реагентов связаны между собой и нельзя изменить ни одной из них без того, чтобы не изменились все остальные. Приведённое выражение для К справедливо в случае газовых реакций при невысоких давлениях и в разбавленных растворах.