Равнокрылые
Равнокры'лые (Homoptera), отряд сосущих насекомых, наиболее близкий к отряду полужесткокрылых, или клопов. Включает подотряды цикадовых,листоблошек,тлей,алейродид (или белокрылок), кокцид.
Равномерная непрерывность
Равноме'рная непреры'вность, важное понятие математического анализа. Функция f (x) называется равномерно-непрерывной на данном множестве, если для всякого e > 0 можно найти такое d = d(e) > 0, что êf (x1) — f (x2)ê<e для любой пары чисел x1 и x2 из данного множества, удовлетворяющей условию ïx1—x2ï< d (ср. Непрерывная функция). Например, функция f (x) = x2 равномерно непрерывна на отрезке [0, 1]: если , то (так как для 0 £ x1 £ 1, 0 £ x2 £ 1 обязательно ïx1 + x2ï£ 2). Вообще функция, непрерывная в каждой точке отрезка [а, b], равномерно непрерывна на этом отрезке (теорема Кантора). Для интервала эта теорема может не иметь места.
Так, например, функция непрерывна в каждой точке интервала 0 < x < 1, но не является равномерно непрерывной в этом интервале, потому что, например, при e = 1 для любого d > 0 (d < 1) мы имеем удовлетворяющие неравенству ïx1— x2ï < d числа x1 = и x2 = d , для которых .
Равномерная сходимость
Равноме'рная сходи'мость, важный частный случай сходимости. Последовательность функций fn (x) (n = 1, 2, ...) называется равномерно сходящейся на данном множестве к предельной функции f (x), если для каждого e > 0 существует такое N = N (e), что ïf (x) — fn (x)ï < e при n > N для всех точек х из данного множества. Например, последовательность функций fn (x) = xn равномерно сходится на отрезке [0, 1/2] к предельной функции f (x) = 0, так как ïf (x) — fn (x)ï £ (1/2) n < e для всех 0 £ x £ 1/2, если только n > ln (1/e)/ln2, но она не будет равномерно сходящейся на отрезке [0, 1], где предельной функцией является f (x) = 0 при 0 £ x < 1 и f (1) = 1, т.к. для любого сколько угодно большого заданного n существуют точки h, удовлетворяющие неравенствам , для которых ïf (h) — fn (h)ï = hn > 1/2. Понятие Р. с. допускает простую геометрическую интерпретацию: если последовательность функций fn (x) равномерно сходится на некотором отрезке к функции f (x), то это означает, что для любого e > 0 все кривые у = fn (x) с достаточно большим номером будут расположены внутри полосы ширины 2e, ограниченной кривыми у = f (x) ± e для любого х из этого отрезка (см. рис.).
Равномерно сходящиеся последовательности функций обладают важными свойствами; например, предельная функция равномерно сходящейся последовательности непрерывных функций также непрерывна (приведённый выше пример показывает, что предельная функция последовательности непрерывных функций, которая не является равномерно сходящейся, может быть разрывной). Важную роль в математическом анализе играет теорема Вейерштрасса: каждая непрерывная на отрезке функция может быть представлена как предел равномерно сходящейся последовательности многочленов (или тригонометрических полиномов). См. также Приближение и интерполирование функций.
Рис. к ст. Равномерная сходимость.
Равномерное движение
Равноме'рное движе'ние, движение точки, при котором численная величина её скорости v постоянна. Путь, пройденный точкой при Р. д. за промежуток времени t, равен s = vt. Твёрдое тело может совершать поступательное Р. д., при котором всё сказанное относится к каждой точке тела, и равномерное вращение вокруг неподвижной оси, при котором угловая скорость тела со постоянна, а угол поворота тела j = wt.
Равномерное распределение
Равноме'рное распределе'ние, прямоугольное распределение, специальный вид распределения вероятностей случайной величины Х, принимающей значения из интервала (а — h, a + h); характеризуется плотностью вероятности:
.
Математическое ожидание:
Ех = a, дисперсия Dx = h2/3, характеристическая функция: .
С помощью линейного преобразования интервал (а — h, a + h) может быть переведён в любой заданный интервал. Так, величина Y = (X — a + h)/2h равномерно распределена на интервале (0, 1). Если Y1, Y2, ..., Yn равномерно распределены на интервале (0, 1), то закон распределения их суммы, нормированной математическим ожиданием n/2 и дисперсией n/12, при возрастании n быстро приближается к нормальному распределению(даже при n = 3 приближение часто бывает достаточным для практики).
Равномерно-распределённая нагрузка
Равноме'рно-распределённая нагру'зка в строительной механике, сплошная нагрузка постоянной интенсивности.
Равномерные приближения
Равноме'рные приближе'ния, приближения функции, в которых мерой уклонения на данном множестве служит точная верхняя грань модуля разности между данной функцией f (x) и приближающей функцией Р (х). Например, уклонением непрерывной функции Р (х) от непрерывной функции f (x) на отрезке [а, b] будет
.
Р. п. называются также чебышевскими приближениями по имени П. Л. Чебышева, исследовавшего их в 1854. См. Приближение и интерполирование функций.
Равноногие ракообразные
Равноно'гие ракообра'зные (Isopoda), отряд высших ракообразных. Тело сплющено в спинно-брюшном направлении; длина от 0,1 до 27 см, у большинства — 1—2 см. Глаза сидячие. Один, реже два грудных сегмента срастаются с головой. Один или несколько брюшных сегментов сливаются с тельсоном (анальной лопастью). Первая пара грудных конечностей преобразована в ногочелюсти, остальные 7 пар — одноветвистые, примерно одинаковой длины и строения (отсюда название). Брюшные конечности пластинчатые и частично превращены в жабры. Сердце — в брюшном отделе. Развитие большей частью прямое. Самка вынашивает зародышей и молодь в выводковой сумке, образованной отростками грудных конечностей. Около 4500 видов. Обитают преимущественно в морских, а также в пресных (см. Водяной ослик) водах и на суше (мокрицы). Многие виды Р. р. служат пищей рыб. Морской таракан (Mesidothea entomon) повреждает сети и пойманную в них рыбу; виды из рода Limnoria точат дерево, разрушая деревянные части сооружений морских портов.